A refrigeration plant that operates on the cycle shown below serves as a water chiller. Data on individual components are as follows: Evaporator: UA = 30.6 kW/K Condenser: Water flow rate = me = 6.8 kg/s UA = 26.5 kW/K Water flow rate = mc = 7.6 kg/s The refrigeration capacity of the compressor is a function of the evaporating and condensing temperatures of the refrigerant, te and tc, respectively. That capacity is given as: qe [kW]= 239.5 +10.073te - 0.109te²3.41tc-0.00250tc²- 0.2030tetc + 0.00820te²tc + 0.0013tetc²-8.0005x10-5 te²tc² The power consumed by the compressor is also a function of te and tc and is given as: P [kW] = -2.634 -0.3081te -0.00301te²+ 1.066tc - 0.00528t.² - 0.0011tetc - 0.000306t²tc +0.000567tete²+ 3.1x10t²tc² Appreciate that, due to the 1st Law of Thermo, the condenser must reject the energy added in both the evaporator and the compressor. Also, you can assume constant properties for the water (i.e., no temperature dependence). a) Set up the equations that would be used for a Newton-Raphson simulation. Given the initial guesses provided below, use the N-R method to obtain the guesses for iteration #2. Provide the matrix used to solve each iteration along with the guesses for iteration #2. For this part, the inlet water temperature to the evaporator, ta, is 10 °C, and the inlet water temperature to the condenser, tb, is 25 °C.
A refrigeration plant that operates on the cycle shown below serves as a water chiller. Data on individual components are as follows: Evaporator: UA = 30.6 kW/K Condenser: Water flow rate = me = 6.8 kg/s UA = 26.5 kW/K Water flow rate = mc = 7.6 kg/s The refrigeration capacity of the compressor is a function of the evaporating and condensing temperatures of the refrigerant, te and tc, respectively. That capacity is given as: qe [kW]= 239.5 +10.073te - 0.109te²3.41tc-0.00250tc²- 0.2030tetc + 0.00820te²tc + 0.0013tetc²-8.0005x10-5 te²tc² The power consumed by the compressor is also a function of te and tc and is given as: P [kW] = -2.634 -0.3081te -0.00301te²+ 1.066tc - 0.00528t.² - 0.0011tetc - 0.000306t²tc +0.000567tete²+ 3.1x10t²tc² Appreciate that, due to the 1st Law of Thermo, the condenser must reject the energy added in both the evaporator and the compressor. Also, you can assume constant properties for the water (i.e., no temperature dependence). a) Set up the equations that would be used for a Newton-Raphson simulation. Given the initial guesses provided below, use the N-R method to obtain the guesses for iteration #2. Provide the matrix used to solve each iteration along with the guesses for iteration #2. For this part, the inlet water temperature to the evaporator, ta, is 10 °C, and the inlet water temperature to the condenser, tb, is 25 °C.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Part c & d
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY