A quantum mechanical particle moving in one dimension between impenetrable barriers has energy levels ϵ,4ϵ,9ϵ,...ϵ, 4ϵ, 9ϵ, ... , that is En=ϵn2En=ϵ n2 . Suppose that ϵ=0.035eVϵ =0.035 eV for a certain such quantum system. What is the probability (as a percent) that such a system will be in its ground state when it is in contact with a reservoir at room temperature? The probability that the system will be in its ground state when it is in contact with a reservoir at room temperature is
A quantum mechanical particle moving in one dimension between impenetrable barriers has energy levels ϵ,4ϵ,9ϵ,...ϵ, 4ϵ, 9ϵ, ... , that is En=ϵn2En=ϵ n2 . Suppose that ϵ=0.035eVϵ =0.035 eV for a certain such quantum system. What is the probability (as a percent) that such a system will be in its ground state when it is in contact with a reservoir at room temperature? The probability that the system will be in its ground state when it is in contact with a reservoir at room temperature is
Related questions
Question
A
The probability that the system will be in its ground state when it is in contact with a reservoir at room temperature is
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps