A pulley is keyed to a shaft midway between two bearings. The shaft is made of cold drawn steel for which the ultimate strength is 500 MPa and the yield strength is 450 MPa. The bending moment at the pulley varies from – 150 N-m to + 400 N-m as the torque on the shaft varies from – 50 N-m to + 150 N-m. Obtain the diameter of the shaft for an indefinite life. The stress concentration factors for the keyway at the pulley in bending and in torsion are 1.6 and 1.3 respectively. Take the following values: Factor of safety = 1.5; Load correction factors = 1.0 in bending and 0.6 in torsion Size effect factor = 0.85; Surface effect factor = 0.88
A pulley is keyed to a shaft midway between two bearings. The shaft is made of cold drawn steel for which the ultimate strength is 500 MPa and the yield strength is 450 MPa. The bending moment at the pulley varies from – 150 N-m to + 400 N-m as the torque on the shaft varies from – 50 N-m to + 150 N-m. Obtain the diameter of the shaft for an indefinite life. The stress concentration factors for the keyway at the pulley in bending and in torsion are 1.6 and 1.3 respectively. Take the following values: Factor of safety = 1.5; Load correction factors = 1.0 in bending and 0.6 in torsion Size effect factor = 0.85; Surface effect factor = 0.88
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
100%
A pulley is keyed to a shaft midway between two bearings. The shaft is made of cold drawn steel for which the ultimate strength is 500 MPa and the yield strength is 450 MPa. The bending moment at the pulley varies from – 150 N-m to + 400 N-m as the torque on the shaft varies from – 50 N-m to + 150 N-m. Obtain the diameter of the shaft for an indefinite life. The stress concentration factors for the keyway at the pulley in bending and in torsion are 1.6 and 1.3 respectively. Take the following values:
Factor of safety = 1.5; Load correction factors = 1.0 in bending and 0.6 in torsion Size effect factor = 0.85; Surface effect factor = 0.88
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY