A piece of putty is initially located at point A on the rim of a grinding wheel rotating at constant angular speed about a horizontal axis. The putty is dislodged from point A when the diameter through A is horizontal. It then rises vertically and returns to A at the instant the wheel completes one revolution. From this information, we wish to find the speed υ of the putty when it leaves the wheel and the force holding it to the wheel. (a) What analysis model is appropriate for the motion of the putty as it rises and falls? (b) Use this model to find a symbolic expression for the time interval between when the putty leaves point A and when it arrives back at A, in terms of υ and g. (c) What is the appropriate analysis model to describe point A on the wheel? (d) Find the period of the motion of point A in terms of the tangential speed v and the radius R of the wheel. (e) Set the time interval from part (b) equal to the period from part (d) and solve for the speed υ of the putty as it leaves the wheel. (f) If the mass of the putty is m, what is the magnitude of the force that held it to the wheel before it was released?
Rigid Body
A rigid body is an object which does not change its shape or undergo any significant deformation due to an external force or movement. Mathematically speaking, the distance between any two points inside the body doesn't change in any situation.
Rigid Body Dynamics
Rigid bodies are defined as inelastic shapes with negligible deformation, giving them an unchanging center of mass. It is also generally assumed that the mass of a rigid body is uniformly distributed. This property of rigid bodies comes in handy when we deal with concepts like momentum, angular momentum, force and torque. The study of these properties – viz., force, torque, momentum, and angular momentum – of a rigid body, is collectively known as rigid body dynamics (RBD).
A piece of putty is initially located at point A on the rim of a grinding wheel rotating at constant angular speed about a horizontal axis. The putty is dislodged from point A when the diameter through A is horizontal. It then rises vertically and returns to A at the instant the wheel completes one revolution. From this information, we wish to find the speed υ of the putty when it leaves the wheel and the force holding it to the wheel. (a) What analysis model is appropriate for the motion of the putty as it rises and falls? (b) Use this model to find a symbolic expression for the time interval between when the putty leaves point A and when it arrives back at A, in terms of υ and g. (c) What is the appropriate analysis model to describe point A on the wheel? (d) Find the period of the motion of point A in terms of the tangential speed v and the radius R of the wheel. (e) Set the time interval from part (b) equal to the period from part (d) and solve for the speed υ of the putty as it leaves the wheel. (f) If the mass of the putty is m, what is the magnitude of the force that held it to the wheel before it was released?
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 7 images