A particle of mass m = 1.1 kg and initial velocity v0 = 13 m/s directly to the right, strikes an initially stationary particle of mass M = 17.5 kg. The collision is inelastic. Afterwards, particle m is observed moving at a speed v = 4.5 m/s, at an angle θ = 59° from its initial direction of motion, and particle M is observed moving at a speed V, as shown in the figure.
A particle of mass m = 1.1 kg and initial velocity v0 = 13 m/s directly to the right, strikes an initially stationary particle of mass M = 17.5 kg. The collision is inelastic. Afterwards, particle m is observed moving at a speed v = 4.5 m/s, at an angle θ = 59° from its initial direction of motion, and particle M is observed moving at a speed V, as shown in the figure.
Related questions
Question
A particle of mass m = 1.1 kg and initial velocity v0 = 13 m/s directly to the right, strikes an initially stationary particle of mass M = 17.5 kg. The collision is inelastic. Afterwards, particle m is observed moving at a speed v = 4.5 m/s, at an angle θ = 59° from its initial direction of motion, and particle M is observed moving at a speed V, as shown in the figure.
-
What happens to V as v → 0? | ||||||
|
-Write an expression for V as v0 → 0. You may assume terms like v0/v vanish.
-Write an expression for V if θ = 0. Assume the balls do not stick together.
-Write an expression for V if θ = 180°.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps