A particle moving in 1D has time-dependent velocity which is given by the quadratic function v(t) = At2 + Bt + C, where A = 4.5 m/s3, B = 3.6 m/s2, and C = −1.7 m/s. a) Find the average acceleration of the particle between t = 0 s and 2.5 s. b) Find the average acceleration of the particle between t = 2.5 s and 5.0 s. c) At what time(s) is the particle at rest?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A particle moving in 1D has time-dependent velocity which is given by the quadratic function v(t) = At2 + Bt + C, where A = 4.5 m/s3, B = 3.6 m/s2, and C = −1.7 m/s. a) Find the average acceleration of the particle between t = 0 s and 2.5 s. b) Find the average acceleration of the particle between t = 2.5 s and 5.0 s. c) At what time(s) is the particle at rest?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 6 images