A red Mazda Miata (type of car) accelerates from rest at a rate of a₁ in the positive x direction for a total of 20.0 seconds. The Mazda then holds their speed and direction constant for a 20.0 additional seconds. Finally, while continuing in the positive x direction, the Mazda slows down at a rate of a2 until the car stops moving. We want to determine the total distance traveled by the Mazda and the average speed of the car if we know a₁ and 2. (A) Sketch a graph of velocity versus time for this short trip. Label the time axis to indicate which portions of the curve(s) correspond to the above intervals. Identify and write knowns and unknowns (B) Without using numerical values, determine which physics equations of motion will help solve this problem. Simplify as useful for this particular case. (C) If a₁ = 2.0 m/s² and a₂ - -3.0 m/s² determine the total distance traveled during all intervals and the average velocity of the Mazda.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Step by step
Solved in 3 steps with 3 images