A one-particle, one-dimensional system has the potential energy function V = V₁ for 0 ≤ x ≤ 1 and V = ∞ elsewhere (where Vo is a constant). a) Use the variation function = sin() for 0 ≤ x ≤ 1 p and = 0 elsewhere to estimate the ground-state energy of this system. b) Calculate the % relative error.
A one-particle, one-dimensional system has the potential energy function V = V₁ for 0 ≤ x ≤ 1 and V = ∞ elsewhere (where Vo is a constant). a) Use the variation function = sin() for 0 ≤ x ≤ 1 p and = 0 elsewhere to estimate the ground-state energy of this system. b) Calculate the % relative error.
Related questions
Question

Transcribed Image Text:one-dimensional
A one-particle,
system has the
potential energy function V = V₁ for 0 ≤ x ≤ 1 and V =
∞ elsewhere (where Vo is a constant).
a) Use the variation function = sin() for 0 ≤ x ≤ 1
and = 0 elsewhere to estimate the ground-state
energy of this system.
b) Calculate the % relative error.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
