A matrix A has the following eigenpairs. (₁₁ 4. [²]) (¹₂=². []) = 2, Use these eigenpairs to find matrix A. Hint: A = PDP-¹
A matrix A has the following eigenpairs. (₁₁ 4. [²]) (¹₂=². []) = 2, Use these eigenpairs to find matrix A. Hint: A = PDP-¹
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Eigenpairs of Matrix A:**
A matrix \( A \) has the following eigenpairs:
1. \( (\lambda_1 = 4, \begin{bmatrix} 2 \\ 1 \end{bmatrix}) \)
2. \( (\lambda_2 = 2, \begin{bmatrix} 1 \\ 1 \end{bmatrix}) \)
**Task:**
Use these eigenpairs to find matrix \( A \).
**Hint:**
The matrix \( A \) can be found using the formula \( A = PDP^{-1} \).
**Matrix Representation:**
\[ A = \begin{bmatrix} 6 & \text{Ex: 5} \\ & \end{bmatrix} \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F97fa71a9-ddb9-496b-9b0a-bf970e388fad%2F66d20f18-61f8-47c4-a269-ff995b476a17%2F9aq5gjf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Eigenpairs of Matrix A:**
A matrix \( A \) has the following eigenpairs:
1. \( (\lambda_1 = 4, \begin{bmatrix} 2 \\ 1 \end{bmatrix}) \)
2. \( (\lambda_2 = 2, \begin{bmatrix} 1 \\ 1 \end{bmatrix}) \)
**Task:**
Use these eigenpairs to find matrix \( A \).
**Hint:**
The matrix \( A \) can be found using the formula \( A = PDP^{-1} \).
**Matrix Representation:**
\[ A = \begin{bmatrix} 6 & \text{Ex: 5} \\ & \end{bmatrix} \]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Introduction of the given problem
and corresponding eigen vector is
and corresponding eigen vector is
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 6 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)