A matrix A has the following eigenpairs. (₁₁ 4. [²]) (¹₂=². []) = 2, Use these eigenpairs to find matrix A. Hint: A = PDP-¹

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Eigenpairs of Matrix A:**

A matrix \( A \) has the following eigenpairs:

1. \( (\lambda_1 = 4, \begin{bmatrix} 2 \\ 1 \end{bmatrix}) \)
2. \( (\lambda_2 = 2, \begin{bmatrix} 1 \\ 1 \end{bmatrix}) \)

**Task:**

Use these eigenpairs to find matrix \( A \).

**Hint:**

The matrix \( A \) can be found using the formula \( A = PDP^{-1} \).

**Matrix Representation:**

\[ A = \begin{bmatrix} 6 & \text{Ex: 5} \\ & \end{bmatrix} \]
Transcribed Image Text:**Eigenpairs of Matrix A:** A matrix \( A \) has the following eigenpairs: 1. \( (\lambda_1 = 4, \begin{bmatrix} 2 \\ 1 \end{bmatrix}) \) 2. \( (\lambda_2 = 2, \begin{bmatrix} 1 \\ 1 \end{bmatrix}) \) **Task:** Use these eigenpairs to find matrix \( A \). **Hint:** The matrix \( A \) can be found using the formula \( A = PDP^{-1} \). **Matrix Representation:** \[ A = \begin{bmatrix} 6 & \text{Ex: 5} \\ & \end{bmatrix} \]
Expert Solution
Step 1: Introduction of the given problem

lambda subscript 1 equals 4 and corresponding eigen vector is open square brackets table row 2 row 1 end table close square brackets

lambda subscript 2 equals 2 and corresponding eigen vector is open square brackets table row 1 row 1 end table close square brackets

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,