If my matrix contributes eigenvalue A = 3+ 4i with corresponding eigenvector v = [i, 1]. What are the two basis solutions? O 71 = e"[- sin(3t), cos(3t)], a 2 = e"[cos(3t), sin(3t)], O71= e[– sin(4t), cos(4t)], a 2 = e"[cos(4t), sin(4t)], O 71 = e"[- sin(4t), sin(4t)], *2 = e"[cos(4t), cos(4t)],
If my matrix contributes eigenvalue A = 3+ 4i with corresponding eigenvector v = [i, 1]. What are the two basis solutions? O 71 = e"[- sin(3t), cos(3t)], a 2 = e"[cos(3t), sin(3t)], O71= e[– sin(4t), cos(4t)], a 2 = e"[cos(4t), sin(4t)], O 71 = e"[- sin(4t), sin(4t)], *2 = e"[cos(4t), cos(4t)],
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![If my matrix contributes eigenvalue \( \lambda = 3 + 4i \) with corresponding eigenvector \( \vec{v} = [i, 1] \), what are the two basis solutions?
Options:
1. \( \vec{x}_1 = e^{4t}[-\sin(3t), \cos(3t)], \quad \vec{x}_2 = e^{4t}[\cos(3t), \sin(3t)] \)
2. \( \vec{x}_1 = e^{3t}[-\sin(4t), \cos(4t)], \quad \vec{x}_2 = e^{3t}[\cos(4t), \sin(4t)] \)
3. \( \vec{x}_1 = e^{3t}[-\sin(4t), \sin(4t)], \quad \vec{x}_2 = e^{3t}[\cos(4t), \cos(4t)] \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa6cee183-215d-43ed-a508-06b044f7e9eb%2F9add83b7-04ea-419f-b011-211aa98c3c76%2Fwrw771p_processed.png&w=3840&q=75)
Transcribed Image Text:If my matrix contributes eigenvalue \( \lambda = 3 + 4i \) with corresponding eigenvector \( \vec{v} = [i, 1] \), what are the two basis solutions?
Options:
1. \( \vec{x}_1 = e^{4t}[-\sin(3t), \cos(3t)], \quad \vec{x}_2 = e^{4t}[\cos(3t), \sin(3t)] \)
2. \( \vec{x}_1 = e^{3t}[-\sin(4t), \cos(4t)], \quad \vec{x}_2 = e^{3t}[\cos(4t), \sin(4t)] \)
3. \( \vec{x}_1 = e^{3t}[-\sin(4t), \sin(4t)], \quad \vec{x}_2 = e^{3t}[\cos(4t), \cos(4t)] \)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)