A lizard of mass 5.60 g is warming itself in the bright sunlight. It casts a shadow of 1.60 cm2 on a piece of paper held perpendicularly to the Sun’s rays. The intensity of sunlight at the top of the Earth's atmosphere is 1.40 × 103 W/m2, but only half of this energy penetrates the atmosphere and is absorbed by the lizard. The lizard has a specific heat of 4.20 J/(g·°C). Assuming that there is no heat loss by the lizard (to simplify), how long must the lizard lie in the Sun in order to raise its temperature by 1.50°C?
A lizard of mass 5.60 g is warming itself in the bright sunlight. It casts a shadow of 1.60 cm2 on a piece of paper held perpendicularly to the Sun’s rays. The intensity of sunlight at the top of the Earth's atmosphere is 1.40 × 103 W/m2, but only half of this energy penetrates the atmosphere and is absorbed by the lizard. The lizard has a specific heat of 4.20 J/(g·°C). Assuming that there is no heat loss by the lizard (to simplify), how long must the lizard lie in the Sun in order to raise its temperature by 1.50°C?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
A lizard of mass 5.60 g is warming itself in the bright sunlight. It casts a shadow of 1.60 cm2 on a piece of paper held perpendicularly to the Sun’s rays. The intensity of sunlight at the top of the Earth's atmosphere is 1.40 × 103 W/m2, but only half of this energy penetrates the atmosphere and is absorbed by the lizard. The lizard has a specific heat of 4.20 J/(g·°C).
Assuming that there is no heat loss by the lizard (to simplify), how long must the lizard lie in the Sun in order to raise its temperature by 1.50°C?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON