A light source emitting radiation at frequency 7.00 × 1014 Hz is incapable of ejecting photoelectrons from a certain metal. In an attempt to use this source to eject photoelectrons from the metal, the source is given a velocity toward the metal. (a) Explain how this procedure can produce photoelectrons. (b) When the speed of the light source is equal to 0.280c, photoelectrons just begin to be ejected from the metal. What is the work function of the metal? (c) When the speed of the light source is increased to 0.900c, determine the maximum kinetic energy of the photoelectrons.
Compton effect
The incoming photons' energy must be in the range of an X-ray frequency to generate the Compton effect. The electron does not lose enough energy that reduces the wavelength of scattered photons towards the visible spectrum. As a result, with visible lights, the Compton effect is missing.
Recoil Velocity
The amount of backward thrust or force experienced by a person when he/she shoots a gun in the forward direction is called recoil velocity. This phenomenon always follows the law of conservation of linear momentum.
A light source emitting
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images