A large volcanic eruption triggers a tsunami. At a seismic station 210 km away, the instruments record that the time difference between the arrival of the tidal wave and the arrival of the sound of the explosion is 7.80 min. Assume the tsunami travels at 700 km/h. What is the ratio of the speed (?tsunami) of the tsunami to the speed (?sound) of the sound of the explosion?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A large volcanic eruption triggers a tsunami. At a seismic station 210 km away, the instruments record that the time difference between the arrival of the tidal wave and the arrival of the sound of the explosion is 7.80 min. Assume the tsunami travels at 700 km/h.
What is the ratio of the speed (?tsunami) of the tsunami to the speed (?sound) of the sound of the explosion?
Step by step
Solved in 2 steps with 2 images