A horizontal load P is applied to an assembly consisting of two inclined bars, as shown in the figure. The cross-sectional area of bar (1) is 1.30 in.2, and the cross-sectional area of bar (2) is 1.75 in.2. The normal stress in either bar may not exceed 24 ksi. Determine the maximum load P that may be applied to this assembly. Assume dimensions of a=14.5 ft, b=9.0 ft, and c=14.5 ft. Make an assumption for the maximum load case, referred to as “Load Case A”, in which the force in member (1) will control the capacity of the two-bar assembly. For this assumption, which may or may not be correct, the force in member (1) is F1,A=F1, allow. Enter the value of the force in member 2 for Load Case A.
A horizontal load P is applied to an assembly consisting of two inclined bars, as shown in the figure. The cross-sectional area of bar (1) is 1.30 in.2, and the cross-sectional area of bar (2) is 1.75 in.2. The normal stress in either bar may not exceed 24 ksi. Determine the maximum load P that may be applied to this assembly. Assume dimensions of a=14.5 ft, b=9.0 ft, and c=14.5 ft.
Make an assumption for the maximum load case, referred to as “Load Case A”, in which the force in member (1) will control the capacity of the two-bar assembly. For this assumption, which may or may not be correct, the force in member (1) is F1,A=F1, allow. Enter the value of the force in member 2 for Load Case A.
![Make an assumption for the maximum load case, referred to as
"Load Case A", in which the force in member (1) will control the
capacity of the two-bar assembly. For this assumption, which may
or may not be correct, the force in member (1) is F1,A = F1, allow -
Enter the value of the force in member 2 for Load Case A.
F2A =
i
kips](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fab9feb78-7b01-4572-95a3-b98241b7f8e4%2F3e9f3521-3ed1-49be-a336-dfb91dc88dc2%2Fnbd578p_processed.png&w=3840&q=75)
![A horizontal load P is applied to an assembly consisting of two
inclined bars, as shown in the figure. The cross-sectional area of bar
(1) is 1.30 in.?, and the cross-sectional area of bar (2) is 1.75 in.?. The
normal stress in either bar may not exceed 24 ksi. Determine the
maximum load P that may be applied to this assembly. Assume
dimensions of a = 14.5 ft, b = 9.0 ft, and c = 14.5 ft.
(1)
a
B
P
b
(2)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fab9feb78-7b01-4572-95a3-b98241b7f8e4%2F3e9f3521-3ed1-49be-a336-dfb91dc88dc2%2F93qra7o_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)