A hoop of mass M = 2 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure. The lack of slipping means that when the center of mass of the hoop has speed v, the tangential speed of the hoop relative to the center of mass is also equal to VCM, since in that case the instantaneous speed is zero for the part of the hoop that is in contact with the ground (v-v=0). Therefore, the angular speed of the rotating hoop is w = VCM/R. of rim relative to center of mass (a) The initial speed of the hoop is v, = 2 m/s, and the hill has a height = 3.5 m. What is the speed v at the bottom of the hill? 6.188699379 ✔ m/s (b) Replace the hoop with a bicycle wheel whose rim has mass M = 2 kg and radius R = 0.4 m, and whose hub has mass m = 1.3 kg, as shown in the figure. The spokes have negligible mass. What would the bicycle wheel's speed be at the bottom of the hill? (Assume that the wheel has the same initial speed and start at the same height as the hoop in part (a)). V=7.66245441 Additional Materials eBook O x m/s center of mass
Angular Momentum
The momentum of an object is given by multiplying its mass and velocity. Momentum is a property of any object that moves with mass. The only difference between angular momentum and linear momentum is that angular momentum deals with moving or spinning objects. A moving particle's linear momentum can be thought of as a measure of its linear motion. The force is proportional to the rate of change of linear momentum. Angular momentum is always directly proportional to mass. In rotational motion, the concept of angular momentum is often used. Since it is a conserved quantity—the total angular momentum of a closed system remains constant—it is a significant quantity in physics. To understand the concept of angular momentum first we need to understand a rigid body and its movement, a position vector that is used to specify the position of particles in space. A rigid body possesses motion it may be linear or rotational. Rotational motion plays important role in angular momentum.
Moment of a Force
The idea of moments is an important concept in physics. It arises from the fact that distance often plays an important part in the interaction of, or in determining the impact of forces on bodies. Moments are often described by their order [first, second, or higher order] based on the power to which the distance has to be raised to understand the phenomenon. Of particular note are the second-order moment of mass (Moment of Inertia) and moments of force.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images