A fundamental set of solutions of x' = 3 2 x is: 1 (w) x. - “(;). x-() (F). (1). *--(;) (a) x1 = et X2 = e (b) x1 = e-4t X2 = e? (1)» (F)- (c) x1 = e-4t > X2 = e (). (d) x1 = eat • X2 = et (e) None of the above.
A fundamental set of solutions of x' = 3 2 x is: 1 (w) x. - “(;). x-() (F). (1). *--(;) (a) x1 = et X2 = e (b) x1 = e-4t X2 = e? (1)» (F)- (c) x1 = e-4t > X2 = e (). (d) x1 = eat • X2 = et (e) None of the above.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![**7. A fundamental set of solutions of \(\mathbf{x'} = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \mathbf{x}\) is:**
(a) \(\mathbf{x}_1 = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)
(b) \(\mathbf{x}_1 = e^{-4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)
(c) \(\mathbf{x}_1 = e^{-4t} \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)
(d) \(\mathbf{x}_1 = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)
(e) None of the above.
**8. The solution of the initial-value problem \(\mathbf{x'} = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \mathbf{x}, \, \mathbf{x}(0) = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\) is:**
(a) \(\mathbf{x} = \frac{3}{5} e^{3t} \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \frac{13}{5} e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)
(b) \(\mathbf{x} = -\frac{3}{5} e^{-3t} \begin{pmatrix} 1 \\ -4 \end{pmatrix} + \frac{13}{5} e^{2t} \begin{pmatrix} 1 \\ 1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F69d33b94-47ab-4124-8ded-71fa51390a3f%2F8bddc032-04b7-4826-97d6-d3560e3eafb8%2F14lfn7g_processed.png&w=3840&q=75)
Transcribed Image Text:**7. A fundamental set of solutions of \(\mathbf{x'} = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \mathbf{x}\) is:**
(a) \(\mathbf{x}_1 = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)
(b) \(\mathbf{x}_1 = e^{-4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)
(c) \(\mathbf{x}_1 = e^{-4t} \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)
(d) \(\mathbf{x}_1 = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)
(e) None of the above.
**8. The solution of the initial-value problem \(\mathbf{x'} = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \mathbf{x}, \, \mathbf{x}(0) = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\) is:**
(a) \(\mathbf{x} = \frac{3}{5} e^{3t} \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \frac{13}{5} e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)
(b) \(\mathbf{x} = -\frac{3}{5} e^{-3t} \begin{pmatrix} 1 \\ -4 \end{pmatrix} + \frac{13}{5} e^{2t} \begin{pmatrix} 1 \\ 1
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)