A fundamental set of solutions of x' = 3 2 x is: 1 (w) x. - “(;). x-() (F). (1). *--(;) (a) x1 = et X2 = e (b) x1 = e-4t X2 = e? (1)» (F)- (c) x1 = e-4t > X2 = e (). (d) x1 = eat • X2 = et (e) None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**7. A fundamental set of solutions of \(\mathbf{x'} = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \mathbf{x}\) is:**

(a) \(\mathbf{x}_1 = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)

(b) \(\mathbf{x}_1 = e^{-4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)

(c) \(\mathbf{x}_1 = e^{-4t} \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)

(d) \(\mathbf{x}_1 = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)

(e) None of the above.

**8. The solution of the initial-value problem \(\mathbf{x'} = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \mathbf{x}, \, \mathbf{x}(0) = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\) is:**

(a) \(\mathbf{x} = \frac{3}{5} e^{3t} \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \frac{13}{5} e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)

(b) \(\mathbf{x} = -\frac{3}{5} e^{-3t} \begin{pmatrix} 1 \\ -4 \end{pmatrix} + \frac{13}{5} e^{2t} \begin{pmatrix} 1 \\ 1
Transcribed Image Text:**7. A fundamental set of solutions of \(\mathbf{x'} = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \mathbf{x}\) is:** (a) \(\mathbf{x}_1 = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\) (b) \(\mathbf{x}_1 = e^{-4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\) (c) \(\mathbf{x}_1 = e^{-4t} \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\) (d) \(\mathbf{x}_1 = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\) (e) None of the above. **8. The solution of the initial-value problem \(\mathbf{x'} = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \mathbf{x}, \, \mathbf{x}(0) = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\) is:** (a) \(\mathbf{x} = \frac{3}{5} e^{3t} \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \frac{13}{5} e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\) (b) \(\mathbf{x} = -\frac{3}{5} e^{-3t} \begin{pmatrix} 1 \\ -4 \end{pmatrix} + \frac{13}{5} e^{2t} \begin{pmatrix} 1 \\ 1
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,