A function of the form e^−gx2 is a solution of the Schrodinger equation for the harmonic oscillator, provided that g is chosen correctly. In this problem you will find the correct form of g. (a) Start by substituting Ψ = e^−gx2 into the left-hand side of the Schrodinger equation for the harmonic oscillator and evaluating the second derivative. (b) You will find that in general the resulting expression is not of the form constant × Ψ, implying that Ψ is not a solution to the equation. However, by choosing the value of g such that the terms in x^2 cancel one another, a solution is obtained. Find the required form of g and hence the corresponding energy. (c) Confirm that the function so obtained is indeed the ground state of the harmonic oscillator and has the correct energy.

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter7: Hamilton's Principle-lagrangian And Hamiltonian Dynamics
Section: Chapter Questions
Problem 7.36P
icon
Related questions
Question
100%

A function of the form e^−gx2 is a solution of the Schrodinger equation for the harmonic oscillator, provided that g is chosen correctly. In this problem you will find the correct form of g.


(a) Start by substituting Ψ = e^−gx2 into the left-hand side of the Schrodinger equation for the harmonic oscillator and evaluating the second derivative.


(b) You will find that in general the resulting expression is not of the form constant × Ψ, implying that Ψ is not a solution to the equation. However, by choosing the value of g such that the terms in x^2 cancel one another, a solution is obtained. Find the required form of g and hence the corresponding energy.


(c) Confirm that the function so obtained is indeed the ground state of the harmonic oscillator and has the correct energy.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Adiabatic approximation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning