A flat aluminum plate 8 m long and 1.5 m wide has a surface temperature of 180°C. For its cooling, air at 1 atm and speed of 10 m/s circulates at 20°C parallel to the length of the plate. a)  Determine the rate of heat transfer by convection in steady state.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter2: Steady Heat Conduction
Section: Chapter Questions
Problem 2.38P: 2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from...
icon
Related questions
Question

A flat aluminum plate 8 m long and 1.5 m wide has a surface temperature of 180°C. For its cooling, air at 1 atm and speed of 10 m/s circulates at 20°C parallel to the length of the plate.
a)  Determine the rate of heat transfer by convection in steady state.

b) In order to increase the heat dissipation from the plate, the engineers considered placing rectangular fins of the same material (Kaluminium = 200 W/m.K). The fins are 50 mm long and 0.5 mm thick and the placement density is 75 fins per unit length of the plate (the fins are equally spaced and span the entire width of the plate). The convective coefficient of the air over the plate resulting from the placement of fins is 10 W/m².K. Determine the heat transfer rate and percentage increase over part (a).

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning