A doppler fetal monitor is a hand-held ultrasound device that is used to detect a fetal heartbeat in prenatal care. The device works by measuring the speed of the fetus's ventricular wall and thereby tracking its heartrate. Part a Suppose the fetus's ventricular wall moves back and forth in a pattern approximating simple harmonic motion with an amplitude of 1.7 mm and a frequency of 3.0 Hz. Find the maximum speed of the heart wall (in m/s) during this motion. Be careful of units! Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23, -2, 1e6, 5.23e-8 Enter answer here m/s Part b Suppose that the ultrasound source placed on the mother's abdomen produces sound at a frequency 2 MHz (a megahertz is 106Hz). Sound travels through tissue at roughly the same speed as in water (v ≈ 1500 m/s). Find the maximum change in frequency between the sound that is emitted by the device and the sound that is observed at the wall of the baby's heart. Treat the heart wall as a moving observer. Hint: you will need to use your answer from part (a). Give your answer as a positive number in Hz. Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23, -2, 1e6, 5.23e-8 Enter answer here Hz Now find the maximum difference in frequency between the ultrasound emitted by the device and the reflected sound received by the device after it bounces off the ventricular wall. This is the frequency shift that the device measures. Treat the heart wall as a moving source, emitting a wave with the frequency that you found in part (b). Give your answer as a positive number in Hz
A doppler fetal monitor is a hand-held ultrasound device that is used to detect a fetal heartbeat in prenatal care. The device works by measuring the speed of the fetus's ventricular wall and thereby tracking its heartrate. Part a Suppose the fetus's ventricular wall moves back and forth in a pattern approximating simple harmonic motion with an amplitude of 1.7 mm and a frequency of 3.0 Hz. Find the maximum speed of the heart wall (in m/s) during this motion. Be careful of units! Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23, -2, 1e6, 5.23e-8 Enter answer here m/s Part b Suppose that the ultrasound source placed on the mother's abdomen produces sound at a frequency 2 MHz (a megahertz is 106Hz). Sound travels through tissue at roughly the same speed as in water (v ≈ 1500 m/s). Find the maximum change in frequency between the sound that is emitted by the device and the sound that is observed at the wall of the baby's heart. Treat the heart wall as a moving observer. Hint: you will need to use your answer from part (a). Give your answer as a positive number in Hz. Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23, -2, 1e6, 5.23e-8 Enter answer here Hz Now find the maximum difference in frequency between the ultrasound emitted by the device and the reflected sound received by the device after it bounces off the ventricular wall. This is the frequency shift that the device measures. Treat the heart wall as a moving source, emitting a wave with the frequency that you found in part (b). Give your answer as a positive number in Hz
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON