A diver leaves the platform with her body straight. Her body is in a relatively slow rotation, with an angular speed of 4.0 rad/s. She then tucks into a pike position, with her body essentially folded in half. We can use a simple model to understand what happens next. First, model her 50 kg,1.8 m body as uniform. Next, assume that when she goes into a pike position, shown in (Figure 1), she really does fold her body exactly in half. In terms of this model, what is her initial moment of inertia? Express your answer with the appropriate units. In terms of this model, what is her moment of inertia in the pike position? Express your answer with the appropriate units.
A diver leaves the platform with her body straight. Her body is in a relatively slow rotation, with an angular speed of 4.0 rad/s. She then tucks into a pike position, with her body essentially folded in half. We can use a simple model to understand what happens next. First, model her 50 kg,1.8 m body as uniform. Next, assume that when she goes into a pike position, shown in (Figure 1), she really does fold her body exactly in half. In terms of this model, what is her initial moment of inertia? Express your answer with the appropriate units. In terms of this model, what is her moment of inertia in the pike position? Express your answer with the appropriate units.
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter13: Rotation Ii: A Conservation Approach
Section: Chapter Questions
Problem 71PQ: A long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to...
Related questions
Question
A diver leaves the platform with her body straight. Her body is in a relatively slow rotation, with an angular speed of 4.0 rad/s. She then tucks into a pike position, with her body essentially folded in half. We can use a simple model to understand what happens next. First, model her 50 kg,1.8 m body as uniform. Next, assume that when she goes into a pike position, shown in (Figure 1), she really does fold her body exactly in half.
In terms of this model, what is her initial moment of inertia?
Express your answer with the appropriate units.
In terms of this model, what is her moment of inertia in the pike position?
Express your answer with the appropriate units.

Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning

University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University

Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning

University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University

Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning