A countercurrent-flow, plate-and-frame dialyzer is to be sized to process 0.78 m3/h of an aqueous solution containing 300 kg/m3 of H2SO4 and smaller amounts of copper and nickel sulfates, using a wash water sweep of 1.0 m3/h. It is desired to recover 30% of the acid at 25oC. From batch experiments with an acid-resistant vinyl membrane, in the absence of external mass-transfer resistances, a permeance of 0.025 cm/min for the acid and a water-transport number of +1.5 are measured. Membrane transport of copper and nickel sulfates is negligible. Experience with plate-and-frame dialyzers indicates that flow will be laminar and the combined external liquid-film mass-transfer coefficients will be 0.020 cm/min. Determine the membrane area required in m2.
A countercurrent-flow, plate-and-frame dialyzer is to be sized to process 0.78 m3/h of an aqueous solution containing 300 kg/m3 of H2SO4 and smaller amounts of copper and nickel sulfates, using a wash water sweep of 1.0 m3/h. It is desired to recover 30% of the acid at 25oC. From batch experiments with an acid-resistant vinyl membrane, in the absence of external mass-transfer resistances, a permeance of 0.025 cm/min for the acid and a water-transport number of +1.5 are measured. Membrane transport of copper and nickel sulfates is negligible. Experience with plate-and-frame dialyzers indicates that flow will be laminar and the combined external liquid-film mass-transfer coefficients will be 0.020 cm/min. Determine the membrane area required in m2.
Step by step
Solved in 10 steps with 11 images