A chip that is of length L = 5.5 mm on a side and thickness t = 2.0 mm is encased in a ceramic substrate, and its exposed surface is convectively cooled by a dielectric liquid for which h = 150 W/m² K and T = 20°C. Th Chip, q. T., P. Cp The time is i Substrate In the off-mode the chip is in thermal equilibrium with the coolant (T; = T). When the chip is energized, however, its temperature increases until a new steady state is established. For purposes of analysis, the energized chip is characterized by uniform volumetric heating with q = 9 x 106 W/m³. Assuming an infinite contact resistance between the chip and substrate and negligible conduction resistance within the chip, determine the steady-state chip temperature Tf. Following activation of the chip, how long does it take to come within 1°C of this temperature? The chip density and specific heat are p = 2000 kg/m³ and c = 700 J/kg-K, respectively. The steady-state chip temperature T, is i S. °C.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter8: Natural Convection
Section: Chapter Questions
Problem 8.26P
icon
Related questions
Question
A chip that is of length L = 5.5 mm on a side and thickness t = 2.0 mm is encased in a ceramic substrate, and its exposed surface is
convectively cooled by a dielectric liquid for which h = 150 W/m² K and To
= 20°C.
.
Th
Chip,
q, T₁, P, Cp
The time is
Substrate
In the off-mode the chip is in thermal equilibrium with the coolant (T; = T). When the chip is energized, however, its temperature
increases until a new steady state is established. For purposes of analysis, the energized chip is characterized by uniform volumetric
heating with a = 9 x 106 W/m³. Assuming an infinite contact resistance between the chip and substrate and negligible conduction
resistance within the chip, determine the steady-state chip temperature Tƒ. Following activation of the chip, how long does it take to
come within 1°C of this temperature? The chip density and specific heat are p = 2000 kg/m³ and c = 700 J/kg-K, respectively.
The steady-state chip temperature Tf is i
S.
°C.
Transcribed Image Text:A chip that is of length L = 5.5 mm on a side and thickness t = 2.0 mm is encased in a ceramic substrate, and its exposed surface is convectively cooled by a dielectric liquid for which h = 150 W/m² K and To = 20°C. . Th Chip, q, T₁, P, Cp The time is Substrate In the off-mode the chip is in thermal equilibrium with the coolant (T; = T). When the chip is energized, however, its temperature increases until a new steady state is established. For purposes of analysis, the energized chip is characterized by uniform volumetric heating with a = 9 x 106 W/m³. Assuming an infinite contact resistance between the chip and substrate and negligible conduction resistance within the chip, determine the steady-state chip temperature Tƒ. Following activation of the chip, how long does it take to come within 1°C of this temperature? The chip density and specific heat are p = 2000 kg/m³ and c = 700 J/kg-K, respectively. The steady-state chip temperature Tf is i S. °C.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning