A child's top is held in place upright on a frictionless surface. The axle has a radius of r = 2.71 mm. Two strings are wrapped around the axle, and the top is set spinning by applying T = 1.40 N of constant tension to each string. If it takes 0.800 s for the string to unwind, how much angular momentum L does the top acquire? Assume that the strings do not slip as the tension is applied. L = kg.m² S Point P is located on the outer surface of the top, a distance T 2r R P
A child's top is held in place upright on a frictionless surface. The axle has a radius of r = 2.71 mm. Two strings are wrapped around the axle, and the top is set spinning by applying T = 1.40 N of constant tension to each string. If it takes 0.800 s for the string to unwind, how much angular momentum L does the top acquire? Assume that the strings do not slip as the tension is applied. L = kg.m² S Point P is located on the outer surface of the top, a distance T 2r R P
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Concept explainers
Angular speed, acceleration and displacement
Angular acceleration is defined as the rate of change in angular velocity with respect to time. It has both magnitude and direction. So, it is a vector quantity.
Angular Position
Before diving into angular position, one should understand the basics of position and its importance along with usage in day-to-day life. When one talks of position, it’s always relative with respect to some other object. For example, position of earth with respect to sun, position of school with respect to house, etc. Angular position is the rotational analogue of linear position.
Question
![A child's top is held in place upright on a frictionless surface.
The axle has a radius of r = 2.71 mm. Two strings are
wrapped around the axle, and the top is set spinning by
applying T = 1.40 N of constant tension to each string. If it
takes 0.800 s for the string to unwind, how much angular
momentum L does the top acquire? Assume that the strings
do not slip as the tension is applied.
L =
kg-m²
S
Point P is located on the outer surface of the top, a distance
h = 35.0 mm above the ground. The angle that the outer
surface of the top makes with the rotation axis of the top is
0 = 24.0°. If the final tangential speed u, of point P is
1.55 m/s, what is the top's moment of inertia I?
I=
kg.m²
T
T
2r
R
2r
T
T](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ced988a-75d9-4850-a931-e45e2eceb6a8%2F05c0d7f9-d5b9-45f1-befc-27adfc562501%2F3vpl2ke_processed.png&w=3840&q=75)
Transcribed Image Text:A child's top is held in place upright on a frictionless surface.
The axle has a radius of r = 2.71 mm. Two strings are
wrapped around the axle, and the top is set spinning by
applying T = 1.40 N of constant tension to each string. If it
takes 0.800 s for the string to unwind, how much angular
momentum L does the top acquire? Assume that the strings
do not slip as the tension is applied.
L =
kg-m²
S
Point P is located on the outer surface of the top, a distance
h = 35.0 mm above the ground. The angle that the outer
surface of the top makes with the rotation axis of the top is
0 = 24.0°. If the final tangential speed u, of point P is
1.55 m/s, what is the top's moment of inertia I?
I=
kg.m²
T
T
2r
R
2r
T
T
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON