(a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 150 m? and their inside surface is at 20.0°C, while their outside surface is at 5.00°c. 1560 (b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the next whole integer.) 1 kW room heaters (a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 150 m? and their inside surface is at 20.0°C, while their outside surface is at 5.00°C. 1565.21 x w (b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the next whole integer.) 1 kW room heaters now from O we have, (20-04)x 150 X (20-0 - 50) (11.5 Xt6") -----> NOT THE ANSWER = 1.56 x10° w

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
(a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an average
thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is
150 m? and their inside surface is at 20.0°C, while their outside surface is at 5.00°C.
1560
X W
(b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer
to the next whole integer.)
1 kW room heaters
(a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an
average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface
area of the walls is 150 m? and their inside surface is at 20.0°C, while their outside surface is at 5.00°C.
1565.21 X W
(b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your
answer to the next whole integer.)
12
1 kW room heaters
now from O
we have,
(2x0 -04)x 150 X (26.0 - 50) w
(11.5 x163)
------> NOT THE ANSWER
* = 1.56 X10³ w
Transcribed Image Text:(a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 150 m? and their inside surface is at 20.0°C, while their outside surface is at 5.00°C. 1560 X W (b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the next whole integer.) 1 kW room heaters (a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 150 m? and their inside surface is at 20.0°C, while their outside surface is at 5.00°C. 1565.21 X W (b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the next whole integer.) 12 1 kW room heaters now from O we have, (2x0 -04)x 150 X (26.0 - 50) w (11.5 x163) ------> NOT THE ANSWER * = 1.56 X10³ w
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON