A built-in cantilever beam with a hollow rectangular cross-section is subjected to a uniformly distributed load as shown in Figure Q1 below. Which of the following statements best describes the shear force variation along the length, in the x direction, using the sign conventions provided in lectures? Figure Q1 For the same beam and loading case in Figure Q1, what steps could be taken from the following options, in the order defined, to find the maximum value of shear stress WHEN CONSIDERING ANY DIRECTION IN THE X-Y PLANE (not just those aligned with x and y) at any location within the beam? i Use the shear stress equation to find Tyy- i. Use the bending stross oquation to find ox- i. Consider loading along the longth of the beam to establish the maximum shoar force and bending moment. iv. Find the partial derivative of the bending moment with respect to w. v. Choose key locations within the cross-section for separate analysis. vi. Apply Castigliano's theorem and solve. vi. Use Mohr's Circle analysis to solve Tmax, using values for fy. Ox and dy- vii. Form an equation for the bending moment as a function of x - writing some terms using Macaulay notation. Of all the values of Tmax found, select the largest. O a. iv, i, ii, vi, ix O b.i, v, i, i, vii, ix Oci, ii, vii, iv, ix O d. None of the provided answers are correct O e. viii, i, ii, vii, ix O f. i, ii, v, vi, ix Og i, iv, i, vi, ix O h.i, ii, vi, ix

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
A built-in cantilever beoam with a hollow rectangular cross-section is subjected to a uniformly distributed load as shown in Figure Q1 below. Which of
the following statements best describes the shear force variation along the length, in the x direction, using the sign conventions provided in lectures?
Figure Q1
For the same beam and loading case in Figure Q1, what steps could be taken from the following options, in the order defined, to find the maximum
value of shear stress WHEN CONSIDERING ANY DIRECTION IN THE X-Y PLANE (not just those aligned with x and y) at any location within
the beam?
i Use the shoar stress equation to find 1xy-
i. Uso the bending stress oquation to find ox-
i. Consider loading along the longth of the beam to establish the maximum shoar force and bending moment.
iv. Find the partial derivative of the bending moment with respect to w.
v. Choose key locations within the cross-section for separate analysis.
vi. Apply Castigliano's theorem and solve.
vii. Uso Mohr's Circle analysis to solve Tmax, using values for ty. Ox and oy.
vii Form an equation for the bending moment as a function of x - writing some terms using Macaulay notation.
ix. Of all the values of Tmax found, select the largest.
O a. iv, i, ii, vi, ix
O b.i,v, , i, vii, ix
O c.i, i, vii, iv, ix
O d. None of the provided answers are correct
O e. vi i, i, vii, ix
O f. i, ii, v, vi, ix
Og i,iv, i, vi, ix
O h.i, ii, vi, ix
Transcribed Image Text:A built-in cantilever beoam with a hollow rectangular cross-section is subjected to a uniformly distributed load as shown in Figure Q1 below. Which of the following statements best describes the shear force variation along the length, in the x direction, using the sign conventions provided in lectures? Figure Q1 For the same beam and loading case in Figure Q1, what steps could be taken from the following options, in the order defined, to find the maximum value of shear stress WHEN CONSIDERING ANY DIRECTION IN THE X-Y PLANE (not just those aligned with x and y) at any location within the beam? i Use the shoar stress equation to find 1xy- i. Uso the bending stress oquation to find ox- i. Consider loading along the longth of the beam to establish the maximum shoar force and bending moment. iv. Find the partial derivative of the bending moment with respect to w. v. Choose key locations within the cross-section for separate analysis. vi. Apply Castigliano's theorem and solve. vii. Uso Mohr's Circle analysis to solve Tmax, using values for ty. Ox and oy. vii Form an equation for the bending moment as a function of x - writing some terms using Macaulay notation. ix. Of all the values of Tmax found, select the largest. O a. iv, i, ii, vi, ix O b.i,v, , i, vii, ix O c.i, i, vii, iv, ix O d. None of the provided answers are correct O e. vi i, i, vii, ix O f. i, ii, v, vi, ix Og i,iv, i, vi, ix O h.i, ii, vi, ix
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Members with compression and bending
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning