A building is constructed in an area where the ground surface is horizontal. The groundwater table at the site is very deep. For a point within the soil mass, 3 m below the surface, the preconstruction effective vertical stress was 52 kPa and the effective horizontal stress was 26 kPa (based on a lateral pressure coefficient K equal to 0.5); consider these stresses to be principal stresses. The vertical stress at the same point is increased by 20 kPa because of foundation loading and building use, but assume the horizontal stress is not changed. Shortly after the building is completed and occupied, the groundwater table at the site raises to within 1.5 m of the ground surface. The vertical effective stress in the soil mass changes because of the raised water table. Determine the maximum shear stress at the analyzed point in the soil mass for the changed condition if: (a) the horizontal effective stress is not changed by the rising water table (b) the horizontal effective stress is reduced to a value equal to K times the submerged effective vertical stress (based on effective soil unit weight only and not including stress due to construction loading).
A building is constructed in an area where the ground surface is horizontal. The groundwater table at the site is very deep. For a point within the soil mass, 3 m below the surface, the preconstruction effective vertical stress was 52 kPa and the effective horizontal stress was 26 kPa (based on a lateral pressure coefficient K equal to 0.5); consider these stresses to be principal stresses. The vertical stress at the same point is increased by 20 kPa because of foundation loading and building use, but assume the horizontal stress is not changed. Shortly after the building is completed and occupied, the groundwater table at the site raises to within 1.5 m of the ground surface. The vertical effective stress in the soil mass changes because of the raised water table. Determine the maximum shear stress at the analyzed point in the soil mass for the changed condition if:
(a) the horizontal effective stress is not changed by the rising water table
(b) the horizontal effective stress is reduced to a value equal to K times the submerged effective vertical stress (based on effective soil unit weight only and not including stress due to construction loading).
Trending now
This is a popular solution!
Step by step
Solved in 4 steps