A block of mass m = 19.5 kg rests on an inclined plane with a coefficient of static friction of μs = 0.11 between the block and the plane. The inclined plane is L = 6.7 m long and it has a height of h = 3.35 m at its tallest point. What angle, θ in degrees, does the plane make with respect to the horizontal? What is the magnitude of the normal force, FN in newtons, that acts on the block? What is the component of the force of gravity along the plane, Fgx in newtons? Will the block slide?
A block of mass m = 19.5 kg rests on an inclined plane with a coefficient of static friction of μs = 0.11 between the block and the plane. The inclined plane is L = 6.7 m long and it has a height of h = 3.35 m at its tallest point. What angle, θ in degrees, does the plane make with respect to the horizontal? What is the magnitude of the normal force, FN in newtons, that acts on the block? What is the component of the force of gravity along the plane, Fgx in newtons? Will the block slide?
Related questions
Question
100%
A block of mass m = 19.5 kg rests on an inclined plane with a coefficient of static friction of μs = 0.11 between the block and the plane. The inclined plane is L = 6.7 m long and it has a height of h = 3.35 m at its tallest point.
What angle, θ in degrees, does the plane make with respect to the horizontal?
What is the magnitude of the normal force, FN in newtons, that acts on the block?
What is the component of the force of gravity along the plane, Fgx in newtons?
Will the block slide?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images