A betatron is a device that accelerates electrons to energies in the MeV range by means of electromagnetic induction. Electrons in a vacuum chamber are held in a circular orbit by a magnetic field perpendicular to the orbital plane. The magnetic field is gradually increased to induce an electric field around the orbit. (a) Show that the electric field is in the correct direction to make the electrons speed up. (b) Assume the radius of the orbit remains constant. Show that the average magnetic field over the area enclosed by the orbit must be twice as large as the magnetic field at the circle’s circumference.

icon
Related questions
Question

A betatron is a device that accelerates electrons to energies in the MeV range by means of electromagnetic induction. Electrons in a vacuum chamber are held in a circular orbit by a magnetic field perpendicular to the orbital plane. The magnetic field is gradually increased to induce an electric field around the orbit. (a) Show that the electric field is in the correct direction to make the electrons speed up. (b) Assume the radius of the orbit remains constant. Show that the average magnetic field over the area enclosed by the orbit must be twice as large as the magnetic field at the circle’s circumference.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer