A basketball player jumps straight up for a ball. To do this, he lowers his body 0.260 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.920 m above the floor. (a) Calculate his velocity (in m/s) when he leaves the floor. (Enter a number.) m/s (b) Calculate his acceleration (in m/s2) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.260 m. (Enter a number.) m/s2 (c) Calculate the force (in N) he exerts on the floor to do this, given that his mass is 108 kg. (Enter a number.) N
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 4 images