A balloon filled with helium (of density PHe = 0.164 kg/m³) has a cube shape and rises through the strato- sphere. Air density is given by p(z) = Pa exp(-9), where pa = 1.225 kg/m³ is the density of air at the sea level, g = 9.81 m/s² is the gravitational acceleration, R = 287.06 J/kg/K is the specific gas constant of air, and T is the air temperature, which is constant in the stratosphere and equal to 217 K (Note that this expression for the atmospheric density is strictly correct only in the isothermal region of the stratosphere. However, please use it for solution to this problem). This balloon is designed so that He and its side length h = 30 cm remain constant for all z. The lower surface is located at z and the upper surface at z+h. Derive an expression for the buoyancy force on the balloon and compute the maximum altitude to which the balloon rises in a unit of m. I h He 9
A balloon filled with helium (of density PHe = 0.164 kg/m³) has a cube shape and rises through the strato- sphere. Air density is given by p(z) = Pa exp(-9), where pa = 1.225 kg/m³ is the density of air at the sea level, g = 9.81 m/s² is the gravitational acceleration, R = 287.06 J/kg/K is the specific gas constant of air, and T is the air temperature, which is constant in the stratosphere and equal to 217 K (Note that this expression for the atmospheric density is strictly correct only in the isothermal region of the stratosphere. However, please use it for solution to this problem). This balloon is designed so that He and its side length h = 30 cm remain constant for all z. The lower surface is located at z and the upper surface at z+h. Derive an expression for the buoyancy force on the balloon and compute the maximum altitude to which the balloon rises in a unit of m. I h He 9
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY