A and B form an ideal solution. Calculate the mole fraction of B in the vapor phase if the mole fraction of A in the liquid phase is 0.20. The vapor pressures of pure A is 3.0 times greater than that of pure B.
A and B form an ideal solution. Calculate the mole fraction of B in the vapor phase if the mole fraction of A in the liquid phase is 0.20. The vapor pressures of pure A is 3.0 times greater than that of pure B.
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
Please explain which rules are used and how to solve this problem.
![**Problem 18:**
A and B form an ideal solution. Calculate the mole fraction of B in the vapor phase if the mole fraction of A in the liquid phase is 0.20. The vapor pressure of pure A is 3.0 times greater than that of pure B.
---
**Explanation:**
To solve this problem, we need to use Raoult's law and Dalton's law of partial pressures. According to Raoult's law, the partial pressure of each component in the solution is the product of the mole fraction of the component in the liquid phase and the vapor pressure of the pure component.
Let:
- \( P_A^0 \) be the vapor pressure of pure A
- \( P_B^0 \) be the vapor pressure of pure B
- \( x_A \) be the mole fraction of A in the liquid phase
- \( x_B \) be the mole fraction of B in the liquid phase
- \( y_A \) be the mole fraction of A in the vapor phase
- \( y_B \) be the mole fraction of B in the vapor phase
Given:
\[ x_A = 0.20 \]
\[ P_A^0 = 3 \cdot P_B^0 \]
First, find the mole fraction of B in the liquid phase \( x_B \):
\[ x_B = 1 - x_A = 1 - 0.20 = 0.80 \]
Next, apply Raoult's law to find the partial pressures:
\[ P_A = x_A \cdot P_A^0 \]
\[ P_B = x_B \cdot P_B^0 \]
Substituting the given values:
\[ P_A = 0.20 \cdot 3P_B^0 = 0.60P_B^0 \]
\[ P_B = 0.80 \cdot P_B^0 = 0.80P_B^0 \]
The total vapor pressure \( P_{total} \) is:
\[ P_{total} = P_A + P_B \]
\[ P_{total} = 0.60P_B^0 + 0.80P_B^0 = 1.40P_B^0 \]
Now, apply Dalton's law to find the mole fraction in the vapor phase:
\[ y_A = \frac{P_A}{P_{total}} = \frac{0.60](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F911c9e4a-8e4d-4d6f-a5f5-4c91474dfa08%2Feee59fd0-d995-48c5-9ea0-1518dfeb68a5%2Fs0oqu6o.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 18:**
A and B form an ideal solution. Calculate the mole fraction of B in the vapor phase if the mole fraction of A in the liquid phase is 0.20. The vapor pressure of pure A is 3.0 times greater than that of pure B.
---
**Explanation:**
To solve this problem, we need to use Raoult's law and Dalton's law of partial pressures. According to Raoult's law, the partial pressure of each component in the solution is the product of the mole fraction of the component in the liquid phase and the vapor pressure of the pure component.
Let:
- \( P_A^0 \) be the vapor pressure of pure A
- \( P_B^0 \) be the vapor pressure of pure B
- \( x_A \) be the mole fraction of A in the liquid phase
- \( x_B \) be the mole fraction of B in the liquid phase
- \( y_A \) be the mole fraction of A in the vapor phase
- \( y_B \) be the mole fraction of B in the vapor phase
Given:
\[ x_A = 0.20 \]
\[ P_A^0 = 3 \cdot P_B^0 \]
First, find the mole fraction of B in the liquid phase \( x_B \):
\[ x_B = 1 - x_A = 1 - 0.20 = 0.80 \]
Next, apply Raoult's law to find the partial pressures:
\[ P_A = x_A \cdot P_A^0 \]
\[ P_B = x_B \cdot P_B^0 \]
Substituting the given values:
\[ P_A = 0.20 \cdot 3P_B^0 = 0.60P_B^0 \]
\[ P_B = 0.80 \cdot P_B^0 = 0.80P_B^0 \]
The total vapor pressure \( P_{total} \) is:
\[ P_{total} = P_A + P_B \]
\[ P_{total} = 0.60P_B^0 + 0.80P_B^0 = 1.40P_B^0 \]
Now, apply Dalton's law to find the mole fraction in the vapor phase:
\[ y_A = \frac{P_A}{P_{total}} = \frac{0.60
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY