(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 6.00 m/s. (Enter the magnitude to at least two decimal places in kg · m2/s.) Two masses m1 and m2 are connected by a rod of length ℓ centered on the origin of an x y coordinate plane. The rod is rotating counterclockwise about the origin such that the masses each have tangential velocity vector v. A dashed circle outlines the path of the masses. magnitude  kg · m2/sdirection ---Select--- +x −x +y −y +z −z

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

(a)

A light, rigid rod of length

ℓ = 1.00 m

joins two particles, with masses

m1 = 4.00 kg

and

m2 = 3.00 kg,

at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 6.00 m/s. (Enter the magnitude to at least two decimal places in kg · m2/s.)

Two masses m1 and m2 are connected by a rod of length ℓ centered on the origin of an x y coordinate plane. The rod is rotating counterclockwise about the origin such that the masses each have tangential velocity vector v. A dashed circle outlines the path of the masses.

magnitude  kg · m2/sdirection ---Select--- +x −x +y −y +z −z

(b)

What If? What would be the new angular momentum of the system (in kg · m2/s) if each of the masses were instead a solid sphere 13.5 cm in diameter? (Round your answer to at least two decimal places.)

  kg · m2/s 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON