A 100 MVA 50 Hz turboalternator operates at no load at 3000 r.p.m. A load of 25 MW is suddenly applied to the machine and the steam valves to the turbine commence to open after 0.6 secs due to the time-lag in the governor system. Assuming inertia constant H of 4.5 kW-sec per kVA of generator capacity, calculate the frequency to which the generated voltage drops before the steam flow commences to increase to meet the new load.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
A 100 MVA 50 Hz turboalternator operates at no load at 3000 r.p.m. A
load of 25 MW is suddenly applied to the machine and the steam valves to the turbine commence
to open after 0.6 secs due to the time-lag in the governor system. Assuming inertia constant H
of 4.5 kW-sec per kVA of generator capacity, calculate the frequency to which the generated
voltage drops before the steam flow commences to increase to meet the new load.
Transcribed Image Text:A 100 MVA 50 Hz turboalternator operates at no load at 3000 r.p.m. A load of 25 MW is suddenly applied to the machine and the steam valves to the turbine commence to open after 0.6 secs due to the time-lag in the governor system. Assuming inertia constant H of 4.5 kW-sec per kVA of generator capacity, calculate the frequency to which the generated voltage drops before the steam flow commences to increase to meet the new load.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Stability Analysis in Power System
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,