9. The general solution of x' = -6 -4 x is: 2 | ++(-:)| (a) x = Cịe-2t + Cze¬2t (b) x = Cye" () + Cac"(1) +*(:) 2t (e) x = Cw (;) +c=* [( -})(-^)] (). (-1) +*( -2t -2t -5/4 (d) x = C1e²t + C2 2t +t (e) None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
The problem presents a differential equation solution task:

9. The general solution of the differential equation \( \mathbf{x}' = \begin{pmatrix} -6 & -4 \\ 4 & 2 \end{pmatrix} \mathbf{x} \) is given in different forms, and the task is to identify the correct one:

(a) \( \mathbf{x} = C_1 e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 e^{-2t} \left[ \begin{pmatrix} -5/4 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \)

(b) \( \mathbf{x} = C_1 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{2t} \left[ \begin{pmatrix} 5 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right] \)

(c) \( \mathbf{x} = C_1 e^{-2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{-2t} \left[ \begin{pmatrix} 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 5/4 \end{pmatrix} \right] \)

(d) \( \mathbf{x} = C_1 e^{2t} \begin{pmatrix} -1 \\ -1 \end{pmatrix} + C_2 \left[ e^{2t} \begin{pmatrix} -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \)

(e) None of the above.

The matrices and vector expressions involve exponential terms and linear functions with respect to \( t \), each associated with constants \( C_1 \) and \( C_2 \). The choices are formatted to show different combinations of these terms.
Transcribed Image Text:The problem presents a differential equation solution task: 9. The general solution of the differential equation \( \mathbf{x}' = \begin{pmatrix} -6 & -4 \\ 4 & 2 \end{pmatrix} \mathbf{x} \) is given in different forms, and the task is to identify the correct one: (a) \( \mathbf{x} = C_1 e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 e^{-2t} \left[ \begin{pmatrix} -5/4 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \) (b) \( \mathbf{x} = C_1 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{2t} \left[ \begin{pmatrix} 5 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right] \) (c) \( \mathbf{x} = C_1 e^{-2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{-2t} \left[ \begin{pmatrix} 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 5/4 \end{pmatrix} \right] \) (d) \( \mathbf{x} = C_1 e^{2t} \begin{pmatrix} -1 \\ -1 \end{pmatrix} + C_2 \left[ e^{2t} \begin{pmatrix} -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \) (e) None of the above. The matrices and vector expressions involve exponential terms and linear functions with respect to \( t \), each associated with constants \( C_1 \) and \( C_2 \). The choices are formatted to show different combinations of these terms.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,