8. Let W denote the subspace of R consisting of all the vectors having coordinates that sum to zero. The vectors U1 - (2, —3, 4, —5, 2), из 3D (-6,9, —12, 15, —6), из %3D (3, —2,7, —9, 1), ид 3D us — (-1,1,2, 1, -3), ив 3D и7 %3D (1,0, —2,3, —2), из %3D (2,–8, 2, –2, 6), (0, –3, –18, 9, 12), (2, –1,1, –9, 7) generate W. Find a subset of the set {u1, u2, . . . , u8} that is a basis for W.

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter2: Systems Of Linear Equations
Section2.3: Spanning Sets And Linear Independence
Problem 45EQ
icon
Related questions
Question
8. Let W denote the subspace of R consisting of all the vectors having
coordinates that sum to zero. The vectors
U1
- (2, —3, 4, —5, 2), из 3D (-6,9, —12, 15, —6),
из %3D (3, —2,7, —9, 1), ид 3D
us — (-1,1,2, 1, -3), ив 3D
и7 %3D (1,0, —2,3, —2), из %3D
(2,–8, 2, –2, 6),
(0, –3, –18, 9, 12),
(2, –1,1, –9, 7)
generate W. Find a subset of the set {u1, u2, . . . , u8} that is a basis for
W.
Transcribed Image Text:8. Let W denote the subspace of R consisting of all the vectors having coordinates that sum to zero. The vectors U1 - (2, —3, 4, —5, 2), из 3D (-6,9, —12, 15, —6), из %3D (3, —2,7, —9, 1), ид 3D us — (-1,1,2, 1, -3), ив 3D и7 %3D (1,0, —2,3, —2), из %3D (2,–8, 2, –2, 6), (0, –3, –18, 9, 12), (2, –1,1, –9, 7) generate W. Find a subset of the set {u1, u2, . . . , u8} that is a basis for W.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning