Determine which set of vectors is not orthogonal. v = (-10,0), w = (0,5) v = (0,1), w = (0,1) O O v = (10,10), w = (−1,1) Ov=(9,-3), w = (−2, −6)
Determine which set of vectors is not orthogonal. v = (-10,0), w = (0,5) v = (0,1), w = (0,1) O O v = (10,10), w = (−1,1) Ov=(9,-3), w = (−2, −6)
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Which Set of Vectors is Not Orthogonal?
In this problem, you are given multiple pairs of vectors. Your task is to determine which pair of vectors is **not** orthogonal.
Recall that two vectors \( \mathbf{v} \) and \( \mathbf{w} \) are orthogonal if their dot product is zero. The dot product of \(\mathbf{v} = (v_1, v_2)\) and \(\mathbf{w} = (w_1, w_2)\) is calculated as:
\[ v_1 \cdot w_1 + v_2 \cdot w_2 \]
Now, examine each pair of vectors below:
1. **Pair 1:**
\[
\mathbf{v} = \langle -10, 0 \rangle, \quad \mathbf{w} = \langle 0, 5 \rangle
\]
**Dot Product Calculation:**
\[ (-10) \cdot 0 + 0 \cdot 5 = 0 + 0 = 0 \]
2. **Pair 2:**
\[
\mathbf{v} = \langle 0, 1 \rangle, \quad \mathbf{w} = \langle 0, 1 \rangle
\]
**Dot Product Calculation:**
\[ 0 \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \]
3. **Pair 3:**
\[
\mathbf{v} = \langle 10, 10 \rangle, \quad \mathbf{w} = \langle -1, 1 \rangle
\]
**Dot Product Calculation:**
\[ 10 \cdot (-1) + 10 \cdot 1 = -10 + 10 = 0 \]
4. **Pair 4:**
\[
\mathbf{v} = \langle 9, -3 \rangle, \quad \mathbf{w} = \langle -2, -6 \rangle
\]
**Dot Product Calculation:**
\[ 9 \cdot (-2) + (-3) \cdot (-6) = -18](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6f02248d-9b04-4bf9-ba6b-18c74681389d%2F525c0a63-2ba3-4805-a846-8f3621d88e10%2Fpfu00x8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Which Set of Vectors is Not Orthogonal?
In this problem, you are given multiple pairs of vectors. Your task is to determine which pair of vectors is **not** orthogonal.
Recall that two vectors \( \mathbf{v} \) and \( \mathbf{w} \) are orthogonal if their dot product is zero. The dot product of \(\mathbf{v} = (v_1, v_2)\) and \(\mathbf{w} = (w_1, w_2)\) is calculated as:
\[ v_1 \cdot w_1 + v_2 \cdot w_2 \]
Now, examine each pair of vectors below:
1. **Pair 1:**
\[
\mathbf{v} = \langle -10, 0 \rangle, \quad \mathbf{w} = \langle 0, 5 \rangle
\]
**Dot Product Calculation:**
\[ (-10) \cdot 0 + 0 \cdot 5 = 0 + 0 = 0 \]
2. **Pair 2:**
\[
\mathbf{v} = \langle 0, 1 \rangle, \quad \mathbf{w} = \langle 0, 1 \rangle
\]
**Dot Product Calculation:**
\[ 0 \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \]
3. **Pair 3:**
\[
\mathbf{v} = \langle 10, 10 \rangle, \quad \mathbf{w} = \langle -1, 1 \rangle
\]
**Dot Product Calculation:**
\[ 10 \cdot (-1) + 10 \cdot 1 = -10 + 10 = 0 \]
4. **Pair 4:**
\[
\mathbf{v} = \langle 9, -3 \rangle, \quad \mathbf{w} = \langle -2, -6 \rangle
\]
**Dot Product Calculation:**
\[ 9 \cdot (-2) + (-3) \cdot (-6) = -18
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning