7.9. Let T: R2 → R2 be a linear transformation. Given that 7 (2)-[-1) and 7(13)-3]. T T compute T ute *([-^]).
7.9. Let T: R2 → R2 be a linear transformation. Given that 7 (2)-[-1) and 7(13)-3]. T T compute T ute *([-^]).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
I need your assistance in solving this problem using matrix notation exclusively. I'm facing difficulties in finding a solution without resorting to any other methods. Could you kindly provide a thorough, step-by-step explanation using only matrix notation to guide me towards the final solution?
Moreover, I have included the question and answer for reference. Would you be able to demonstrate the matrix-based approach leading to the solution?
can you please do it in the matrix from
![### Linear Combinations and Solutions to Problems
#### Problem 7.9:
Write \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\) as a linear combination of \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\) to get
\[
\begin{bmatrix} 4 \\ -1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}.
\]
---
#### CHAPTER 12. SOLUTIONS TO PROBLEMS
\[
\begin{bmatrix} 4 \\ -1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}.
\]
Then, \( T \left( \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right) = -2T \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + 3T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 7 \\ 5 \end{bmatrix} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdb2530dd-2d1e-49b0-a27c-5f0f04c951ed%2F2a05007a-3932-4898-b729-d3e2cb7d488b%2F6zuycbs_processed.png&w=3840&q=75)
Transcribed Image Text:### Linear Combinations and Solutions to Problems
#### Problem 7.9:
Write \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\) as a linear combination of \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\) to get
\[
\begin{bmatrix} 4 \\ -1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}.
\]
---
#### CHAPTER 12. SOLUTIONS TO PROBLEMS
\[
\begin{bmatrix} 4 \\ -1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}.
\]
Then, \( T \left( \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right) = -2T \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + 3T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 7 \\ 5 \end{bmatrix} \).
![**Linear Transformation Exercise**
**Problem 7.9**:
Let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation. Given that:
\[
T \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \text{and} \quad T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 1 \end{bmatrix},
\]
compute \( T \left( \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right) \).
**Explanation:**
In this problem, you are asked to find the output of the linear transformation \( T \) when applied to the vector \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\). The problem provides the transformation results of two specific vectors, \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\).
By leveraging the properties of linear transformations, you can solve for the transformation of the vector \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdb2530dd-2d1e-49b0-a27c-5f0f04c951ed%2F2a05007a-3932-4898-b729-d3e2cb7d488b%2Fld5w8ga_processed.png&w=3840&q=75)
Transcribed Image Text:**Linear Transformation Exercise**
**Problem 7.9**:
Let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation. Given that:
\[
T \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \text{and} \quad T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 1 \end{bmatrix},
\]
compute \( T \left( \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right) \).
**Explanation:**
In this problem, you are asked to find the output of the linear transformation \( T \) when applied to the vector \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\). The problem provides the transformation results of two specific vectors, \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\).
By leveraging the properties of linear transformations, you can solve for the transformation of the vector \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

