7.9. Let T: R2 → R2 be a linear transformation. Given that 7 (2)-[-1) and 7(13)-3]. T T compute T ute *([-^]).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I need your assistance in solving this problem using matrix notation exclusively. I'm facing difficulties in finding a solution without resorting to any other methods. Could you kindly provide a thorough, step-by-step explanation using only matrix notation to guide me towards the final solution?

Moreover, I have included the question and answer for reference. Would you be able to demonstrate the matrix-based approach leading to the solution?

 

can you please do it in the matrix from 

### Linear Combinations and Solutions to Problems

#### Problem 7.9:
Write \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\) as a linear combination of \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\) to get

\[
\begin{bmatrix} 4 \\ -1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}.
\]

---

#### CHAPTER 12. SOLUTIONS TO PROBLEMS

\[
\begin{bmatrix} 4 \\ -1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}.
\]

Then, \( T \left( \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right) = -2T \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + 3T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 7 \\ 5 \end{bmatrix} \).
Transcribed Image Text:### Linear Combinations and Solutions to Problems #### Problem 7.9: Write \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\) as a linear combination of \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\) to get \[ \begin{bmatrix} 4 \\ -1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \] --- #### CHAPTER 12. SOLUTIONS TO PROBLEMS \[ \begin{bmatrix} 4 \\ -1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \] Then, \( T \left( \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right) = -2T \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + 3T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 7 \\ 5 \end{bmatrix} \).
**Linear Transformation Exercise**

**Problem 7.9**:  
Let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation. Given that:

\[ 
T \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \text{and} \quad T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 1 \end{bmatrix},
\]

compute \( T \left( \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right) \).

**Explanation:**
In this problem, you are asked to find the output of the linear transformation \( T \) when applied to the vector \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\). The problem provides the transformation results of two specific vectors, \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\). 

By leveraging the properties of linear transformations, you can solve for the transformation of the vector \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\).
Transcribed Image Text:**Linear Transformation Exercise** **Problem 7.9**: Let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation. Given that: \[ T \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \text{and} \quad T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \] compute \( T \left( \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right) \). **Explanation:** In this problem, you are asked to find the output of the linear transformation \( T \) when applied to the vector \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\). The problem provides the transformation results of two specific vectors, \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\). By leveraging the properties of linear transformations, you can solve for the transformation of the vector \(\begin{bmatrix} 4 \\ -1 \end{bmatrix}\).
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,