([₁]) = Justify your answer. If T is a linear transformation standard basis of R². 7.1. Let T R2 R² be defined by T →>> x .2 Is T a linear transformation? find its matrix relative to the

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I'm currently encountering difficulties in solving this problem using matrix notation alone, and I'm looking for your guidance. The problem specifically requires a solution using matrix notation exclusively, without employing any other methods. Can you please provide a thorough, step-by-step explanation in matrix notation to assist me in reaching the final solution?

matrix way only

I have attached the question and answer can you use the matrix way leading up to the solution

### Linear Transformation Example

#### 7.1

Consider the linear transformation \( T \):

\[
T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

However, if we apply the transformation to the scalar multiple of the vector:

\[
T \left( 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = T \left( \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}
\]

We observe that:

\[
\begin{bmatrix} 2 \\ 4 \end{bmatrix} \neq 2T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)
\]

This indicates that \( T \) is not a linear transformation since it does not satisfy the property of linearity, specifically the principle of scalar multiplication \( T(c\mathbf{v}) = cT(\mathbf{v}) \).
Transcribed Image Text:### Linear Transformation Example #### 7.1 Consider the linear transformation \( T \): \[ T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \] However, if we apply the transformation to the scalar multiple of the vector: \[ T \left( 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = T \left( \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \] We observe that: \[ \begin{bmatrix} 2 \\ 4 \end{bmatrix} \neq 2T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \] This indicates that \( T \) is not a linear transformation since it does not satisfy the property of linearity, specifically the principle of scalar multiplication \( T(c\mathbf{v}) = cT(\mathbf{v}) \).
### Problem 7.1: Determining Linearity of a Transformation

Let \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be defined by 

\[ 
T \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x \\ x^2 \end{bmatrix}. 
\]

Is \( T \) a linear transformation? Justify your answer. If \( T \) is a linear transformation, find its matrix relative to the standard basis of \( \mathbb{R}^2 \).

### Explanation:

1. **Determine Linearity:**

   To check if \( T \) is a linear transformation, we need to verify if it satisfies the following two properties for all vectors \( \mathbf{u}, \mathbf{v} \in \mathbb{R}^2 \) and all scalars \( c \in \mathbb{R} \):

   - **Additivity:** \( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \).
   - **Homogeneity:** \( T(c \mathbf{u}) = c T(\mathbf{u}) \).

2. **Matrix Representation of \( T \):**

   If \( T \) is determined to be a linear transformation, we would find a matrix \( A \) such that for any vector \( \mathbf{v} \in \mathbb{R}^2 \),

   \[
   T(\mathbf{v}) = A \mathbf{v}
   \]

   where \( \mathbf{v} \) is expressed in terms of the standard basis of \( \mathbb{R}^2 \).
Transcribed Image Text:### Problem 7.1: Determining Linearity of a Transformation Let \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be defined by \[ T \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x \\ x^2 \end{bmatrix}. \] Is \( T \) a linear transformation? Justify your answer. If \( T \) is a linear transformation, find its matrix relative to the standard basis of \( \mathbb{R}^2 \). ### Explanation: 1. **Determine Linearity:** To check if \( T \) is a linear transformation, we need to verify if it satisfies the following two properties for all vectors \( \mathbf{u}, \mathbf{v} \in \mathbb{R}^2 \) and all scalars \( c \in \mathbb{R} \): - **Additivity:** \( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \). - **Homogeneity:** \( T(c \mathbf{u}) = c T(\mathbf{u}) \). 2. **Matrix Representation of \( T \):** If \( T \) is determined to be a linear transformation, we would find a matrix \( A \) such that for any vector \( \mathbf{v} \in \mathbb{R}^2 \), \[ T(\mathbf{v}) = A \mathbf{v} \] where \( \mathbf{v} \) is expressed in terms of the standard basis of \( \mathbb{R}^2 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,