7) Find the unit tangent vector for the parameterized curve: r(t) = cos ti+ sin tj+ sin tk, 0≤t< 2π

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
In the image below.
**Problem 7: Finding the Unit Tangent Vector**

Objective: Find the unit tangent vector for the parameterized curve given by:
\[ \mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}, \quad 0 \le t < 2\pi \]

The goal of this problem is to determine the unit tangent vector for the specified parameterized curve. To do so, we will first differentiate \(\mathbf{r}(t)\) with respect to \(t\) to find the tangent vector, and then we will normalize this tangent vector to obtain the unit tangent vector.

**Steps:**
1. **Differentiate \(\mathbf{r}(t)\) with respect to \(t\)**:
   \[ \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} (\cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}) \]
2. **Compute the derivative**:
   \[ \mathbf{r}'(t) = -\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k} \]
3. **Find the magnitude of \(\mathbf{r}'(t)\)**:
   \[ \|\mathbf{r}'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2 + (\cos t)^2} = \sqrt{\sin^2 t + \cos^2 t + \cos^2 t} = \sqrt{1 + \cos^2 t} \]
4. **Form the unit tangent vector \(\mathbf{T}(t)\)**:
   \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k}}{\sqrt{1 + \cos^2 t}} \]

Thus, the unit tangent vector \(\mathbf{T}(t)\) for the given parameterized curve is:
\[ \mathbf{T}(t) = \frac
Transcribed Image Text:**Problem 7: Finding the Unit Tangent Vector** Objective: Find the unit tangent vector for the parameterized curve given by: \[ \mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}, \quad 0 \le t < 2\pi \] The goal of this problem is to determine the unit tangent vector for the specified parameterized curve. To do so, we will first differentiate \(\mathbf{r}(t)\) with respect to \(t\) to find the tangent vector, and then we will normalize this tangent vector to obtain the unit tangent vector. **Steps:** 1. **Differentiate \(\mathbf{r}(t)\) with respect to \(t\)**: \[ \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} (\cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}) \] 2. **Compute the derivative**: \[ \mathbf{r}'(t) = -\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k} \] 3. **Find the magnitude of \(\mathbf{r}'(t)\)**: \[ \|\mathbf{r}'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2 + (\cos t)^2} = \sqrt{\sin^2 t + \cos^2 t + \cos^2 t} = \sqrt{1 + \cos^2 t} \] 4. **Form the unit tangent vector \(\mathbf{T}(t)\)**: \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k}}{\sqrt{1 + \cos^2 t}} \] Thus, the unit tangent vector \(\mathbf{T}(t)\) for the given parameterized curve is: \[ \mathbf{T}(t) = \frac
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,