7) Find the unit tangent vector for the parameterized curve: r(t) = cos ti+ sin tj+ sin tk, 0≤t< 2π
7) Find the unit tangent vector for the parameterized curve: r(t) = cos ti+ sin tj+ sin tk, 0≤t< 2π
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
In the image below.
![**Problem 7: Finding the Unit Tangent Vector**
Objective: Find the unit tangent vector for the parameterized curve given by:
\[ \mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}, \quad 0 \le t < 2\pi \]
The goal of this problem is to determine the unit tangent vector for the specified parameterized curve. To do so, we will first differentiate \(\mathbf{r}(t)\) with respect to \(t\) to find the tangent vector, and then we will normalize this tangent vector to obtain the unit tangent vector.
**Steps:**
1. **Differentiate \(\mathbf{r}(t)\) with respect to \(t\)**:
\[ \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} (\cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}) \]
2. **Compute the derivative**:
\[ \mathbf{r}'(t) = -\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k} \]
3. **Find the magnitude of \(\mathbf{r}'(t)\)**:
\[ \|\mathbf{r}'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2 + (\cos t)^2} = \sqrt{\sin^2 t + \cos^2 t + \cos^2 t} = \sqrt{1 + \cos^2 t} \]
4. **Form the unit tangent vector \(\mathbf{T}(t)\)**:
\[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k}}{\sqrt{1 + \cos^2 t}} \]
Thus, the unit tangent vector \(\mathbf{T}(t)\) for the given parameterized curve is:
\[ \mathbf{T}(t) = \frac](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F58097f1d-9f7f-481d-be94-f210527e0168%2F5428cc9b-9eee-4781-8c96-ee576bb3bdd5%2F8zznm2_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 7: Finding the Unit Tangent Vector**
Objective: Find the unit tangent vector for the parameterized curve given by:
\[ \mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}, \quad 0 \le t < 2\pi \]
The goal of this problem is to determine the unit tangent vector for the specified parameterized curve. To do so, we will first differentiate \(\mathbf{r}(t)\) with respect to \(t\) to find the tangent vector, and then we will normalize this tangent vector to obtain the unit tangent vector.
**Steps:**
1. **Differentiate \(\mathbf{r}(t)\) with respect to \(t\)**:
\[ \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} (\cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}) \]
2. **Compute the derivative**:
\[ \mathbf{r}'(t) = -\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k} \]
3. **Find the magnitude of \(\mathbf{r}'(t)\)**:
\[ \|\mathbf{r}'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2 + (\cos t)^2} = \sqrt{\sin^2 t + \cos^2 t + \cos^2 t} = \sqrt{1 + \cos^2 t} \]
4. **Form the unit tangent vector \(\mathbf{T}(t)\)**:
\[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k}}{\sqrt{1 + \cos^2 t}} \]
Thus, the unit tangent vector \(\mathbf{T}(t)\) for the given parameterized curve is:
\[ \mathbf{T}(t) = \frac
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

