6. Noisy peak finding. Finding peak in a noisy data is a very common task in analyzing physical from sensors. Consider the following data shown below. Your task for this problem is to find the peak position and peak height from noisy data. There are 10 dataset make sure you succeed in finding all the peak in at least 9. def find peaks(xs, ys): return [(xpeak, ypeak), (xpeak, ypeak), ...] Here are some hints: • You should first find candidates for peak in noisy data. Fit the peak(and neighbor) with parabola • Make sure the parameter from the fitted parabola actually indicate that it is a peak. • Then use the parameter from the fitted parabola to find the peak location and height. (Recall High School Math) 1 np.random.seed(9999) 2 def is_good_peak(mu, min_dist=0.8): if mu is None: return False smu = np.sort(mu) if smu[0] < 0.5: return False if smu[-1] > 2.5: return False for p, n in zip(smu, smu[1:]): #print(abs(p-n)) if abs(p-n) < min_dist: return False return True 16 maxx = 3 17 ndata = 500 18 nset = 10 19 1 = [] 20 answers = [] for iset in range(1, nset): npeak = np.random.randint(2,4) xs = np.linspace(0, maxx, ndata) ys = np.zeros(ndata) mu = None while not is_good_peak(mu): mu = np.random.random(npeak)*maxx for ipeak in range(npeak): m = mu[ipeak] sigma = np.random.random()*0.3 + 0.2 height = np.random.random()*0.5 + 1 ys += height*np.exp(-(xs-m)**2/sigma**2) ys += np.random.randn (ndata)*0.07 1.append(ys) answers.append(mu) 39 p6_ys = 1 40 p6_xs = np.linspace (0, maxx,ndata) 41 43 p6_answers = answers for ys, ans in zip(p6_ys, p6_answers): plt.figure() plt.plot(xs, ys, '.') 46 for a in ans: 47 plt.axvline(a,color='red') Python M Python Python Python Python

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

import numpy as np
%matplotlib inline
from matplotlib import pyplot as plt
import math
from math import exp


np.random.seed(9999)
def is_good_peak(mu, min_dist=0.8):
    if mu is None:
        return False
    smu = np.sort(mu)
    if smu[0] < 0.5:
        return False
    if smu[-1] > 2.5:
        return False
    for p, n in zip(smu, smu[1:]):
        #print(abs(p-n))
        if abs(p-n) < min_dist:
            return False
    return True

maxx = 3
ndata = 500
nset = 10
l = []
answers = []
for iset in range(1, nset):
    
    npeak = np.random.randint(2,4)
    xs = np.linspace(0,maxx,ndata)
    ys = np.zeros(ndata)
    mu = None
    
    while not is_good_peak(mu):
        mu = np.random.random(npeak)*maxx
    for ipeak in range(npeak):
        m = mu[ipeak]
        sigma = np.random.random()*0.3 + 0.2
        height = np.random.random()*0.5 + 1
        ys += height*np.exp(-(xs-m)**2/sigma**2)
        ys += np.random.randn(ndata)*0.07
    l.append(ys)
    answers.append(mu)

p6_ys = l
p6_xs = np.linspace(0,maxx,ndata)
p6_answers = answers

for ys, ans in zip(p6_ys, p6_answers):
    plt.figure()
    plt.plot(xs, ys, '.')
    for a in ans:
        plt.axvline(a,color='red')

6. Noisy peak finding.
Finding peak in a noisy data is a very common task in analyzing physical from sensors. Consider the following data shown below.
Your task for this problem is to find the peak position and peak height from noisy data. There are 10 dataset make sure you succeed in finding all the peak in at least 9.
def find peaks(xs, ys):
return [(xpeak, ypeak), (xpeak, ypeak), ...]
Here are some hints:
• You should first find candidates for peak in noisy data.
Fit the peak(and neighbor) with parabola
• Make sure the parameter from the fitted parabola actually indicate that it is a peak.
• Then use the parameter from the fitted parabola to find the peak location and height. (Recall High School Math)
1
np.random.seed(9999)
2 def is_good_peak(mu, min_dist=0.8):
if mu is None:
return False
smu = np.sort(mu)
if smu[0] < 0.5:
return False
if smu[-1] > 2.5:
return False
for p, n in zip(smu, smu[1:]):
#print(abs(p-n))
if abs(p-n) < min_dist:
return False
return True
16
maxx = 3
17
ndata = 500
18
nset = 10
19
1 = []
20
answers = []
for iset in range(1, nset):
npeak = np.random.randint(2,4)
xs = np.linspace(0, maxx, ndata)
ys = np.zeros(ndata)
mu = None
while not is_good_peak(mu):
mu = np.random.random(npeak)*maxx
for ipeak in range(npeak):
m = mu[ipeak]
sigma = np.random.random()*0.3 + 0.2
height = np.random.random()*0.5 + 1
ys += height*np.exp(-(xs-m)**2/sigma**2)
ys += np.random.randn (ndata)*0.07
1.append(ys)
answers.append(mu)
39 p6_ys = 1
40
p6_xs = np.linspace (0, maxx,ndata)
41
43
p6_answers = answers
for ys, ans in zip(p6_ys, p6_answers):
plt.figure()
plt.plot(xs, ys, '.')
46
for a in ans:
47
plt.axvline(a,color='red')
Python
Transcribed Image Text:6. Noisy peak finding. Finding peak in a noisy data is a very common task in analyzing physical from sensors. Consider the following data shown below. Your task for this problem is to find the peak position and peak height from noisy data. There are 10 dataset make sure you succeed in finding all the peak in at least 9. def find peaks(xs, ys): return [(xpeak, ypeak), (xpeak, ypeak), ...] Here are some hints: • You should first find candidates for peak in noisy data. Fit the peak(and neighbor) with parabola • Make sure the parameter from the fitted parabola actually indicate that it is a peak. • Then use the parameter from the fitted parabola to find the peak location and height. (Recall High School Math) 1 np.random.seed(9999) 2 def is_good_peak(mu, min_dist=0.8): if mu is None: return False smu = np.sort(mu) if smu[0] < 0.5: return False if smu[-1] > 2.5: return False for p, n in zip(smu, smu[1:]): #print(abs(p-n)) if abs(p-n) < min_dist: return False return True 16 maxx = 3 17 ndata = 500 18 nset = 10 19 1 = [] 20 answers = [] for iset in range(1, nset): npeak = np.random.randint(2,4) xs = np.linspace(0, maxx, ndata) ys = np.zeros(ndata) mu = None while not is_good_peak(mu): mu = np.random.random(npeak)*maxx for ipeak in range(npeak): m = mu[ipeak] sigma = np.random.random()*0.3 + 0.2 height = np.random.random()*0.5 + 1 ys += height*np.exp(-(xs-m)**2/sigma**2) ys += np.random.randn (ndata)*0.07 1.append(ys) answers.append(mu) 39 p6_ys = 1 40 p6_xs = np.linspace (0, maxx,ndata) 41 43 p6_answers = answers for ys, ans in zip(p6_ys, p6_answers): plt.figure() plt.plot(xs, ys, '.') 46 for a in ans: 47 plt.axvline(a,color='red') Python
M
Python
Python
Python
Python
Transcribed Image Text:M Python Python Python Python
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education