6. For each of the following, is it a well-defined function? Explain. (a) (b) (d) a: R→Z a(x) = B(n) = B: Z→ {0, 1, -1} 1 -1 0 = x. if n is even, if n is positive, otherwise. (c) (Here Ro is the set of non-negative real numbers.) |-|: R → R≥o ||- {²₂ = -X 7: R R X |x| y(x) = = if x ≥ 0, if x ≤ 0.
6. For each of the following, is it a well-defined function? Explain. (a) (b) (d) a: R→Z a(x) = B(n) = B: Z→ {0, 1, -1} 1 -1 0 = x. if n is even, if n is positive, otherwise. (c) (Here Ro is the set of non-negative real numbers.) |-|: R → R≥o ||- {²₂ = -X 7: R R X |x| y(x) = = if x ≥ 0, if x ≤ 0.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![For each of the following, is it a well-defined function? Explain.
(a)
\[
\alpha : \mathbb{R} \to \mathbb{Z}
\]
\[
\alpha(x) = x.
\]
(b)
\[
\beta : \mathbb{Z} \to \{0, 1, -1\}
\]
\[
\beta(n) =
\begin{cases}
1 & \text{if } n \text{ is even,} \\
-1 & \text{if } n \text{ is positive,} \\
0 & \text{otherwise.}
\end{cases}
\]
(c)
(Here \(\mathbb{R}_{\geq 0}\) is the set of non-negative real numbers.)
\[
|-| : \mathbb{R} \to \mathbb{R}_{\geq 0}
\]
\[
|x| =
\begin{cases}
x & \text{if } x \geq 0, \\
-x & \text{if } x \leq 0.
\end{cases}
\]
(d)
\[
\gamma : \mathbb{R} \to \mathbb{R}
\]
\[
\gamma(x) = \frac{x}{|x|}.
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F382d69cf-ffe2-43c0-99c4-21bedf550518%2F740cdca2-77f7-416c-b972-0e23a3e3ca1c%2F2wl2bcd_processed.png&w=3840&q=75)
Transcribed Image Text:For each of the following, is it a well-defined function? Explain.
(a)
\[
\alpha : \mathbb{R} \to \mathbb{Z}
\]
\[
\alpha(x) = x.
\]
(b)
\[
\beta : \mathbb{Z} \to \{0, 1, -1\}
\]
\[
\beta(n) =
\begin{cases}
1 & \text{if } n \text{ is even,} \\
-1 & \text{if } n \text{ is positive,} \\
0 & \text{otherwise.}
\end{cases}
\]
(c)
(Here \(\mathbb{R}_{\geq 0}\) is the set of non-negative real numbers.)
\[
|-| : \mathbb{R} \to \mathbb{R}_{\geq 0}
\]
\[
|x| =
\begin{cases}
x & \text{if } x \geq 0, \\
-x & \text{if } x \leq 0.
\end{cases}
\]
(d)
\[
\gamma : \mathbb{R} \to \mathbb{R}
\]
\[
\gamma(x) = \frac{x}{|x|}.
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)