6. For each of the following, is it a well-defined function? Explain. (a) (b) (d) a: R→Z a(x) = B(n) = B: Z→ {0, 1, -1} 1 -1 0 = x. if n is even, if n is positive, otherwise. (c) (Here Ro is the set of non-negative real numbers.) |-|: R → R≥o ||- {²₂ = -X 7: R R X |x| y(x) = = if x ≥ 0, if x ≤ 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
For each of the following, is it a well-defined function? Explain.

(a)

\[
\alpha : \mathbb{R} \to \mathbb{Z}
\]
\[
\alpha(x) = x.
\]

(b)

\[
\beta : \mathbb{Z} \to \{0, 1, -1\}
\]
\[
\beta(n) = 
\begin{cases} 
1 & \text{if } n \text{ is even,} \\
-1 & \text{if } n \text{ is positive,} \\
0 & \text{otherwise.}
\end{cases}
\]

(c)

(Here \(\mathbb{R}_{\geq 0}\) is the set of non-negative real numbers.)

\[
|-| : \mathbb{R} \to \mathbb{R}_{\geq 0}
\]
\[
|x| = 
\begin{cases} 
x & \text{if } x \geq 0, \\
-x & \text{if } x \leq 0.
\end{cases}
\]

(d)

\[
\gamma : \mathbb{R} \to \mathbb{R}
\]
\[
\gamma(x) = \frac{x}{|x|}.
\]
Transcribed Image Text:For each of the following, is it a well-defined function? Explain. (a) \[ \alpha : \mathbb{R} \to \mathbb{Z} \] \[ \alpha(x) = x. \] (b) \[ \beta : \mathbb{Z} \to \{0, 1, -1\} \] \[ \beta(n) = \begin{cases} 1 & \text{if } n \text{ is even,} \\ -1 & \text{if } n \text{ is positive,} \\ 0 & \text{otherwise.} \end{cases} \] (c) (Here \(\mathbb{R}_{\geq 0}\) is the set of non-negative real numbers.) \[ |-| : \mathbb{R} \to \mathbb{R}_{\geq 0} \] \[ |x| = \begin{cases} x & \text{if } x \geq 0, \\ -x & \text{if } x \leq 0. \end{cases} \] (d) \[ \gamma : \mathbb{R} \to \mathbb{R} \] \[ \gamma(x) = \frac{x}{|x|}. \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,