For each of the following, is it a well-defined function? Explain. (a) (b) (d) a: R→ Z a(x) = x. 3: Z {0, 1,-1} { B(n) = -1 (c) (Here Ro is the set of non-negative real numbers. ) | − | : R → R≥o - >0 |x| if n is even, if n is positive, otherwise. X -X 7: R R y(x) = 8 if x ≥ 0, if x ≤ 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Evaluating the Well-Definedness of Functions

This section explores whether the following mappings can be considered well-defined functions. A function is well-defined if each element from the domain is mapped to exactly one element in the codomain.

#### (a) Function \( \alpha \)
- **Mapping:** \( \alpha : \mathbb{R} \to \mathbb{Z} \)
- **Definition:** \( \alpha(x) = x \)

**Explanation:** This mapping is not well-defined because real numbers (\(\mathbb{R}\)) generally have fractional parts, which cannot belong to the set of integers (\(\mathbb{Z}\)). Only real numbers that are integers can be mapped directly.

#### (b) Function \( \beta \)
- **Mapping:** \( \beta : \mathbb{Z} \to \{0, 1, -1\} \)
- **Definition:**

  \[
  \beta(n) = 
  \begin{cases} 
  1 & \text{if } n \text{ is even,} \\ 
  -1 & \text{if } n \text{ is positive,} \\ 
  0 & \text{otherwise.} 
  \end{cases}
  \]

**Explanation:** This mapping is not well-defined. Consider \( n = 2 \); it satisfies both \( n \) being even and positive, which would map it to both 1 and -1, contradicting the well-defined property of a function.

#### (c) Absolute Value Function
- **Mapping:** \( | \cdot | : \mathbb{R} \to \mathbb{R}_{\geq 0} \)
- **Definition:**

  \[
  |x| = 
  \begin{cases} 
  x & \text{if } x \geq 0, \\ 
  -x & \text{if } x \leq 0.
  \end{cases}
  \]

**Explanation:** This mapping is well-defined. Each real number \( x \) has one unique non-negative \( y \) such that \( y = |x| \).

#### (d) Function \( \gamma \)
- **Mapping:** \( \gamma : \mathbb{R} \to \mathbb{R} \)
- **Definition:** \( \gamma(x) =
Transcribed Image Text:### Evaluating the Well-Definedness of Functions This section explores whether the following mappings can be considered well-defined functions. A function is well-defined if each element from the domain is mapped to exactly one element in the codomain. #### (a) Function \( \alpha \) - **Mapping:** \( \alpha : \mathbb{R} \to \mathbb{Z} \) - **Definition:** \( \alpha(x) = x \) **Explanation:** This mapping is not well-defined because real numbers (\(\mathbb{R}\)) generally have fractional parts, which cannot belong to the set of integers (\(\mathbb{Z}\)). Only real numbers that are integers can be mapped directly. #### (b) Function \( \beta \) - **Mapping:** \( \beta : \mathbb{Z} \to \{0, 1, -1\} \) - **Definition:** \[ \beta(n) = \begin{cases} 1 & \text{if } n \text{ is even,} \\ -1 & \text{if } n \text{ is positive,} \\ 0 & \text{otherwise.} \end{cases} \] **Explanation:** This mapping is not well-defined. Consider \( n = 2 \); it satisfies both \( n \) being even and positive, which would map it to both 1 and -1, contradicting the well-defined property of a function. #### (c) Absolute Value Function - **Mapping:** \( | \cdot | : \mathbb{R} \to \mathbb{R}_{\geq 0} \) - **Definition:** \[ |x| = \begin{cases} x & \text{if } x \geq 0, \\ -x & \text{if } x \leq 0. \end{cases} \] **Explanation:** This mapping is well-defined. Each real number \( x \) has one unique non-negative \( y \) such that \( y = |x| \). #### (d) Function \( \gamma \) - **Mapping:** \( \gamma : \mathbb{R} \to \mathbb{R} \) - **Definition:** \( \gamma(x) =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,