6. (6.2) Find two power series solutions of the differential equation y" - xy' +2y = o about the ordinary point x = 0. 1 1 Y1 = 1-r? and 92 = r- 6 120

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Question 6 has been answered. The answer is correct. Please explain how to get said answer. The power series table has been provided in case you need it. 

6. (6.2) Find two power series solutions of the differential equation
y" - xy' +2y = o about the ordinary point x = 0.
1.
1
Y1 = 1– r²
and
42 = r -r*
120
Transcribed Image Text:6. (6.2) Find two power series solutions of the differential equation y" - xy' +2y = o about the ordinary point x = 0. 1. 1 Y1 = 1– r² and 42 = r -r* 120
Interval
Maclaurin Series
of Convergence
e* = 1 +
1!
Σ
(-00, 00)
2!
3!
-o n!
x2
cos x = 1
(-1)"
(-0, 0)
....
2!
4!
6!
N=0 (2n)!
(-1)"
Σ
(2n + 1)!
sin x = x -
3!
(-0, 00)
5!
7!
0
x x7
(-1)"
tan x = x -
[-1, 1]
(2)
2n + 1
0
= 1 +
2!
(-0, 0)
cosh x
+
6!
, (2n)!
4!
x7
1
Σ
(2n + 1)!
sinh x = x +
+
5!
3!
(-0, 0)
+... =
7!
=0
x?
In(1 + x) = x -
(-1)"+1
(-1, 1]
3
4
1+ x+ x?
(-1, 1)
....
n=0
+
+
+
Transcribed Image Text:Interval Maclaurin Series of Convergence e* = 1 + 1! Σ (-00, 00) 2! 3! -o n! x2 cos x = 1 (-1)" (-0, 0) .... 2! 4! 6! N=0 (2n)! (-1)" Σ (2n + 1)! sin x = x - 3! (-0, 00) 5! 7! 0 x x7 (-1)" tan x = x - [-1, 1] (2) 2n + 1 0 = 1 + 2! (-0, 0) cosh x + 6! , (2n)! 4! x7 1 Σ (2n + 1)! sinh x = x + + 5! 3! (-0, 0) +... = 7! =0 x? In(1 + x) = x - (-1)"+1 (-1, 1] 3 4 1+ x+ x? (-1, 1) .... n=0 + + +
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Power Series
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,