#6 Normal Distribution a) Shade Z> -1.4 b) Find entry for Z = 2.02
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![HALA
Attached Files: Z-Table.doc (7.599 MB)
#6 Normal Distribution
a) Shade Z> -1.4
b) Find entry for Z = 2.02](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa1e1d114-cba9-4c4f-a9ab-1a346fb28105%2Fafa7b9c8-a3e0-434b-87cd-36d5ed225663%2F8txxrpg_processed.jpeg&w=3840&q=75)
Transcribed Image Text:HALA
Attached Files: Z-Table.doc (7.599 MB)
#6 Normal Distribution
a) Shade Z> -1.4
b) Find entry for Z = 2.02
![The entries in this table are the probabilities (or area) for a Standard Normal
Distribution between Z=0 to
Z=? in question. Areas for -ve Z are obtained from symmetry. Use the largest
entry for Z lager than 5.
Z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
0 z
3.0
3.1
0.00
0.01
0.02
0.0000
0.0040
0.0080
0.0398 0.0438
0.0478
0.0793 0.0832 0.0871
0.1179
0.1217
0.1255
0.1554
0.1591 0.1628
0.1915 0.1950
0.1985
0.2257
0.2291
0.2324
0.2580
0.2611
0.2642
0.2881 0.2910 0.2939
0.3159
0.3186
0.3212
0.3413
0.3438
0.3643 0.3665
0.3849 0.3869
0.4032 0.4049 0.4066
0.4192 0.4207
0.4222
0.4987 0.4987 0.4987
0.4990
0.4991
0.4991
3.2 0.4993 0.4993 0.4994
3.3 0.4995 0.4995 0.4995
3.4
0.4997 0.4997
0.3461
0.3485
0.3686
0.3708
0.3888 0.3907
0.4082
0.4236
3.5
0.4998
4.0 0.49997
4.5
0.499997
5.0
0.4999997
f(x) =
0.03
0.0120
0.0160
0.0517 0.0557
0.0910
0.0948
0.1293
0.1331
0.1664
0.1700
Second Decimal Place in z
0 05
0.04
0.2019
0.2357
0.2673
0.2967 0.2995
0.3238 0.3264
0.4988
0.4991
0.4994
0.4996
0.4997 0.4997
0.4332 0.4345
0.4357
0.4452
0.4474
0.4463
0.4554 0.4564 0.4573
0.4649
0.4641
0.4656
0.4713 0.4719 0.4726
0.4772 0.4778 0.4783 0.4788 0.4793
0.4821 0.4826 0.4830 0.4834 0.4838
0.4861 0.4864 0.4864 0.4871 0.4875
0.4893 0.4896 0.4898 0.4901
0.4918 0.4920 0.4922
0.4925
1
Τοπο
0.2054 0.2088
0.2389
0.2422
0.2704 0.2734
0.4938 0.4940
0.4945
0.4941 0.4943
0.4953 0.4955 0.4956 0.4957 0.4959
0.4965
0.4966 0.4967 0.4968 0.4969
0.4974 0.4975 0.4976 0.4977 0.4977
0.4981 0.4982 0.4982 0.4983 0.4984
-exp
0.4904
0.4927
0.0199
0.0596
0.0987
0.1368
0.1736
0.3508
0.3729
0.3925
0.4099
0.4115
0.425: 0.4265
0.4370
0.4382
0.4394
0.4484 0.4495
0.4505
0.4599
0.4582
0.4591
0.4664 0.4671 0.4678
0.4732 0.4738 0.4744
0.3023
0.3289
0.3531
0.3749
0.3944
lo
0.4988
0.4992
0.4994
0.4996 0.4996
0.4997 0.4997
X-L
0.06
0.07
0.0239
0.0279
0.0636
0.0675
0.1026
0.1064
0.1406
0.1443
0.1772 0.1808
0.3051
0.3315
0.2123 0.2157 0.2190
0.2486 0.2517
0.2454
0.2764 0.2794
0.2823
0.3078
0.3106
0.3340 0.3365
0.4798 0.4803
0.4842 0.4846
0.4878 0.4881
0.4906
0.4929
XER
0.3554 0.3577
0.3770
0.3790
0.3962 0.3980
0.4131
0.4147
0.4162
0.4279
0.4292 0.4306
0.08
0.0319
0.0714
0.1103
0.1480
0.1844
0.4406
0.4418 0.4429
0.4515
0.4525
0.4535
0.4608 0.4616
0.4625
0.4686
0.4693
0.4699
0.4750
0.4756
0.4761
0.4909 0.4911
0.4931
0.4932
0.4946 0.4948
0.4949
0.4960 0.4961
0.4962
0.4970 0.4971 0.4972
0.4978 0.4979
0.4979
0.4984 0.4985 0.4985
0.4808
0.4812
0.4850
0.4854
0.4884 0.4887
0.4913
0.4934
0.3599
0.3621
0.3810 0.3830
0.3997
0.4015
0.4177
0.4319
0.4951
0.4963
0.4973
0.4980
0.4986
0.4989 0.4989
0.4989
0.4990
0.4993
0.4992
0.4992
0.4992
0.4994 0.4994 0.4995 0.4995
0.4996 0.4996 0.4996
0.4997 0.4997 0.4997
0.09
0.0359
0.0753
0.1141
0.1517
0.1879
0.2224
0.2549
0.2852
0.3133
0.3389
0.4441
0.4545
0.4633
0.4706
0.4767
0.4817
0.4857
0.4890
0.4916
0.4936
0.4952
0.4964
0.4974
0.4981
0.4986
0.4990
0.4993
0.4995
0.4997
0.4998](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa1e1d114-cba9-4c4f-a9ab-1a346fb28105%2Fafa7b9c8-a3e0-434b-87cd-36d5ed225663%2F5b8h51_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The entries in this table are the probabilities (or area) for a Standard Normal
Distribution between Z=0 to
Z=? in question. Areas for -ve Z are obtained from symmetry. Use the largest
entry for Z lager than 5.
Z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
0 z
3.0
3.1
0.00
0.01
0.02
0.0000
0.0040
0.0080
0.0398 0.0438
0.0478
0.0793 0.0832 0.0871
0.1179
0.1217
0.1255
0.1554
0.1591 0.1628
0.1915 0.1950
0.1985
0.2257
0.2291
0.2324
0.2580
0.2611
0.2642
0.2881 0.2910 0.2939
0.3159
0.3186
0.3212
0.3413
0.3438
0.3643 0.3665
0.3849 0.3869
0.4032 0.4049 0.4066
0.4192 0.4207
0.4222
0.4987 0.4987 0.4987
0.4990
0.4991
0.4991
3.2 0.4993 0.4993 0.4994
3.3 0.4995 0.4995 0.4995
3.4
0.4997 0.4997
0.3461
0.3485
0.3686
0.3708
0.3888 0.3907
0.4082
0.4236
3.5
0.4998
4.0 0.49997
4.5
0.499997
5.0
0.4999997
f(x) =
0.03
0.0120
0.0160
0.0517 0.0557
0.0910
0.0948
0.1293
0.1331
0.1664
0.1700
Second Decimal Place in z
0 05
0.04
0.2019
0.2357
0.2673
0.2967 0.2995
0.3238 0.3264
0.4988
0.4991
0.4994
0.4996
0.4997 0.4997
0.4332 0.4345
0.4357
0.4452
0.4474
0.4463
0.4554 0.4564 0.4573
0.4649
0.4641
0.4656
0.4713 0.4719 0.4726
0.4772 0.4778 0.4783 0.4788 0.4793
0.4821 0.4826 0.4830 0.4834 0.4838
0.4861 0.4864 0.4864 0.4871 0.4875
0.4893 0.4896 0.4898 0.4901
0.4918 0.4920 0.4922
0.4925
1
Τοπο
0.2054 0.2088
0.2389
0.2422
0.2704 0.2734
0.4938 0.4940
0.4945
0.4941 0.4943
0.4953 0.4955 0.4956 0.4957 0.4959
0.4965
0.4966 0.4967 0.4968 0.4969
0.4974 0.4975 0.4976 0.4977 0.4977
0.4981 0.4982 0.4982 0.4983 0.4984
-exp
0.4904
0.4927
0.0199
0.0596
0.0987
0.1368
0.1736
0.3508
0.3729
0.3925
0.4099
0.4115
0.425: 0.4265
0.4370
0.4382
0.4394
0.4484 0.4495
0.4505
0.4599
0.4582
0.4591
0.4664 0.4671 0.4678
0.4732 0.4738 0.4744
0.3023
0.3289
0.3531
0.3749
0.3944
lo
0.4988
0.4992
0.4994
0.4996 0.4996
0.4997 0.4997
X-L
0.06
0.07
0.0239
0.0279
0.0636
0.0675
0.1026
0.1064
0.1406
0.1443
0.1772 0.1808
0.3051
0.3315
0.2123 0.2157 0.2190
0.2486 0.2517
0.2454
0.2764 0.2794
0.2823
0.3078
0.3106
0.3340 0.3365
0.4798 0.4803
0.4842 0.4846
0.4878 0.4881
0.4906
0.4929
XER
0.3554 0.3577
0.3770
0.3790
0.3962 0.3980
0.4131
0.4147
0.4162
0.4279
0.4292 0.4306
0.08
0.0319
0.0714
0.1103
0.1480
0.1844
0.4406
0.4418 0.4429
0.4515
0.4525
0.4535
0.4608 0.4616
0.4625
0.4686
0.4693
0.4699
0.4750
0.4756
0.4761
0.4909 0.4911
0.4931
0.4932
0.4946 0.4948
0.4949
0.4960 0.4961
0.4962
0.4970 0.4971 0.4972
0.4978 0.4979
0.4979
0.4984 0.4985 0.4985
0.4808
0.4812
0.4850
0.4854
0.4884 0.4887
0.4913
0.4934
0.3599
0.3621
0.3810 0.3830
0.3997
0.4015
0.4177
0.4319
0.4951
0.4963
0.4973
0.4980
0.4986
0.4989 0.4989
0.4989
0.4990
0.4993
0.4992
0.4992
0.4992
0.4994 0.4994 0.4995 0.4995
0.4996 0.4996 0.4996
0.4997 0.4997 0.4997
0.09
0.0359
0.0753
0.1141
0.1517
0.1879
0.2224
0.2549
0.2852
0.3133
0.3389
0.4441
0.4545
0.4633
0.4706
0.4767
0.4817
0.4857
0.4890
0.4916
0.4936
0.4952
0.4964
0.4974
0.4981
0.4986
0.4990
0.4993
0.4995
0.4997
0.4998
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)