5.1 through 5.8 Locate the centroid of the plane area shown.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Figure P5.5

### Locating the Centroid of Plane Areas

The figures below illustrate various plane areas for which the centroid needs to be determined. Each figure is described with its respective measurements.

#### Fig. P5.1
- A composite rectangle.
- Vertical dimension: 300 mm.
- Horizontal dimensions: 200 mm for the left section and 400 mm for the right section.
- Offset vertical dimension on the left: 150 mm.

#### Fig. P5.2
- A trapezoidal shape with a triangular section on the right.
- Vertical dimension: 12 inches.
- Horizontal dimensions: 10 inches for the flat left section, 9 inches for the triangular section.
- The triangle is situated on top, creating a step on the left side of 8 inches.

#### Fig. P5.3
- A right-angled triangle.
- Vertical height: 270 mm.
- Base width: 135 mm.
- Top horizontal offset: 90 mm.

#### Fig. P5.4
- A rectangle with a right triangular cutout on the bottom left.
- Vertical dimension: 24 inches.
- Horizontal dimensions: 21 inches in total, with a triangular cutout.
- Height of the triangular section: 16 inches.
- Width of the rectangular extension on the right: 13 inches.

#### Fig. P5.5
- A semicircular shape attached to a rectangular base.
- Radius of the semicircle: 225 mm.
- Base horizontal length: 375 mm.

#### Fig. P5.6
- A rectangle with a semicircular cutout at the top center.
- Overall rectangle dimensions: 9 inches by 8 inches.
- Semicircular cutout: 4.5 inches radius (9 inches diameter), centered along the top width.

These diagrams present geometric configurations frequently used in engineering and physics. The centroid, known as the geometric center of a plane area, is an essential concept in structural analysis and design.
Transcribed Image Text:### Locating the Centroid of Plane Areas The figures below illustrate various plane areas for which the centroid needs to be determined. Each figure is described with its respective measurements. #### Fig. P5.1 - A composite rectangle. - Vertical dimension: 300 mm. - Horizontal dimensions: 200 mm for the left section and 400 mm for the right section. - Offset vertical dimension on the left: 150 mm. #### Fig. P5.2 - A trapezoidal shape with a triangular section on the right. - Vertical dimension: 12 inches. - Horizontal dimensions: 10 inches for the flat left section, 9 inches for the triangular section. - The triangle is situated on top, creating a step on the left side of 8 inches. #### Fig. P5.3 - A right-angled triangle. - Vertical height: 270 mm. - Base width: 135 mm. - Top horizontal offset: 90 mm. #### Fig. P5.4 - A rectangle with a right triangular cutout on the bottom left. - Vertical dimension: 24 inches. - Horizontal dimensions: 21 inches in total, with a triangular cutout. - Height of the triangular section: 16 inches. - Width of the rectangular extension on the right: 13 inches. #### Fig. P5.5 - A semicircular shape attached to a rectangular base. - Radius of the semicircle: 225 mm. - Base horizontal length: 375 mm. #### Fig. P5.6 - A rectangle with a semicircular cutout at the top center. - Overall rectangle dimensions: 9 inches by 8 inches. - Semicircular cutout: 4.5 inches radius (9 inches diameter), centered along the top width. These diagrams present geometric configurations frequently used in engineering and physics. The centroid, known as the geometric center of a plane area, is an essential concept in structural analysis and design.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY