5. Let A: UV and B: VW be linear transformations of finite dimensional vector spaces over a field F. Show that if Ker(B) Im(A) = {0} then rank(A) = rank(Bo A).

Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN:9781305658004
Author:Ron Larson
Publisher:Ron Larson
Chapter7: Eigenvalues And Eigenvectors
Section7.CM: Cumulative Review
Problem 3CM: Let T:RnRm be the linear transformation defined by T(v)=Av, where A=[30100302]. Find the dimensions...
icon
Related questions
Question
5. Let A: UV and B: VW be linear transformations of finite dimensional vector spaces
over a field F. Show that if Ker(B) Im(A) = {0} then rank(A) = rank(Bo A).
Transcribed Image Text:5. Let A: UV and B: VW be linear transformations of finite dimensional vector spaces over a field F. Show that if Ker(B) Im(A) = {0} then rank(A) = rank(Bo A).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:
9781305071742
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage