5. Consider a weather forecaster who is paid based on her performance. Each day, she forecasts the probability q€ [0, 1] that it will rain the following day. She is given a bonus that depends on her forecast and whether it rains. Assume that the forecaster knows the true probability, p, and when choosing her forecast, q, cares only about maximizing her bonus for that day (in particular, she may lie about the probability if doing so increases her pay). (a) Suppose the bonus is equal to the percentage the forecast assigns to what actually happens. For example, if the forecaster says there is a 72% chance of rain (i.e. q = 0.72), then she is paid $72 if it rains and $28 if it does not rain. If the forecaster is a risk neutral expected utility maximizer, what forecast will she make (as a function of p)? (b) Suppose instead that the bonus is equal to 100(1-(1-9)2) dollars if it rains and 100(1-2) dollars if it does not rain. For example, if the forecaster says there is an 80% chance of rain, she is paid $96 if it rains and $36 if it does not rain. If the forecaster is a risk neutral expected utility maximizer, what forecast will she make (as a function of p)? (c) Would your answer to part (b) change if the forecaster was risk averse? (d) Now suppose that the scheme in part (b) is replaced with a randomized scheme that pays $100 with probability (1 − (1 − q)2) if it rains, $100 with probability 1 - q² if it does not rain, and otherwise pays $0. For example, if the forecaster says there is an 80% chance of rain, she has a 96% chance of getting $100 and a 4% chance of getting nothing if it rains, and she has a 36% chance of getting $100 and a 64% chance of getting nothing if it does not rain. If the forecaster is a risk neutral expected utility maximizer, what forecast will she make (as a function of p)? (e) Would your answer to part (d) change if the forecaster was risk averse?
5. Consider a weather forecaster who is paid based on her performance. Each day, she forecasts the probability q€ [0, 1] that it will rain the following day. She is given a bonus that depends on her forecast and whether it rains. Assume that the forecaster knows the true probability, p, and when choosing her forecast, q, cares only about maximizing her bonus for that day (in particular, she may lie about the probability if doing so increases her pay). (a) Suppose the bonus is equal to the percentage the forecast assigns to what actually happens. For example, if the forecaster says there is a 72% chance of rain (i.e. q = 0.72), then she is paid $72 if it rains and $28 if it does not rain. If the forecaster is a risk neutral expected utility maximizer, what forecast will she make (as a function of p)? (b) Suppose instead that the bonus is equal to 100(1-(1-9)2) dollars if it rains and 100(1-2) dollars if it does not rain. For example, if the forecaster says there is an 80% chance of rain, she is paid $96 if it rains and $36 if it does not rain. If the forecaster is a risk neutral expected utility maximizer, what forecast will she make (as a function of p)? (c) Would your answer to part (b) change if the forecaster was risk averse? (d) Now suppose that the scheme in part (b) is replaced with a randomized scheme that pays $100 with probability (1 − (1 − q)2) if it rains, $100 with probability 1 - q² if it does not rain, and otherwise pays $0. For example, if the forecaster says there is an 80% chance of rain, she has a 96% chance of getting $100 and a 4% chance of getting nothing if it rains, and she has a 36% chance of getting $100 and a 64% chance of getting nothing if it does not rain. If the forecaster is a risk neutral expected utility maximizer, what forecast will she make (as a function of p)? (e) Would your answer to part (d) change if the forecaster was risk averse?
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step 1: Define forecasting
VIEWStep 2: Find optimal forecast (q) for the given the scenario
VIEWStep 3: Analyze optimal forecast (q) for the given the scenario
VIEWStep 4: Explain if the value of (q) changes if the forecaster turns risk-averse.
VIEWStep 5: Analyze optimal forecast (q) for the given the scenario
VIEWStep 6: Analyze optimal forecast (q) for the given the scenario
VIEWSolution
VIEWStep by step
Solved in 7 steps with 30 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.Recommended textbooks for you
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education