5. Consider a particle in a box of length L = 1 in a state defined by the wave function, 4(x) = Ax²(1 - x) (a) Apply the normalization condition to determine A in op(x). 2 (1) (b) Compute the expectation value of the energy directly. Express it in the form E = (const)h2/8m. What is the value of const? (c) Sketch (x) inside the box. Based on visual inspection, what two particle-in-a-box eigenfunctions probably contribute most to (x)? (d) Expand (x) in terms of the particle in a box eigenfunctions. Write the first four terms in the wave function with numerical coefficients. If you work this problem by hand, the following integrals will be useful - Ju² sinu du = -u² cosu + 2cosu + 2usinu Ju³ sinu du = -u³ cosu + 3u² sinu - 6sinu + 6ucosu (e) Evaluate the average energy using your approximate wave function from part (d), and compare it to the result you got from part (b).
5. Consider a particle in a box of length L = 1 in a state defined by the wave function, 4(x) = Ax²(1 - x) (a) Apply the normalization condition to determine A in op(x). 2 (1) (b) Compute the expectation value of the energy directly. Express it in the form E = (const)h2/8m. What is the value of const? (c) Sketch (x) inside the box. Based on visual inspection, what two particle-in-a-box eigenfunctions probably contribute most to (x)? (d) Expand (x) in terms of the particle in a box eigenfunctions. Write the first four terms in the wave function with numerical coefficients. If you work this problem by hand, the following integrals will be useful - Ju² sinu du = -u² cosu + 2cosu + 2usinu Ju³ sinu du = -u³ cosu + 3u² sinu - 6sinu + 6ucosu (e) Evaluate the average energy using your approximate wave function from part (d), and compare it to the result you got from part (b).
Introductory Chemistry: A Foundation
9th Edition
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Donald J. DeCoste
Chapter10: Energy
Section: Chapter Questions
Problem 3QAP
Related questions
Question
Please answer all parts!!
![5. Consider a particle in a box of length L = 1 in a state defined by the wave function,
4(x) = Ax²(1 - x)
(a) Apply the normalization condition to determine A in op(x). 2
(1)
(b) Compute the expectation value of the energy directly. Express it in the form E =
(const)h2/8m. What is the value of const?
(c) Sketch (x) inside the box. Based on visual inspection, what two particle-in-a-box
eigenfunctions probably contribute most to (x)?
(d) Expand (x) in terms of the particle in a box eigenfunctions. Write the first four terms in
the wave function with numerical coefficients. If you work this problem by hand, the
following integrals will be useful
-
Ju² sinu du = -u² cosu + 2cosu + 2usinu
Ju³ sinu du = -u³ cosu + 3u² sinu - 6sinu + 6ucosu
(e) Evaluate the average energy using your approximate wave function from part (d), and
compare it to the result you got from part (b).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9d7dc701-b654-4339-995f-9e7ccdd48dfe%2Faba0a863-2660-43da-963a-9bf9f0f372ee%2Fuze617g_processed.png&w=3840&q=75)
Transcribed Image Text:5. Consider a particle in a box of length L = 1 in a state defined by the wave function,
4(x) = Ax²(1 - x)
(a) Apply the normalization condition to determine A in op(x). 2
(1)
(b) Compute the expectation value of the energy directly. Express it in the form E =
(const)h2/8m. What is the value of const?
(c) Sketch (x) inside the box. Based on visual inspection, what two particle-in-a-box
eigenfunctions probably contribute most to (x)?
(d) Expand (x) in terms of the particle in a box eigenfunctions. Write the first four terms in
the wave function with numerical coefficients. If you work this problem by hand, the
following integrals will be useful
-
Ju² sinu du = -u² cosu + 2cosu + 2usinu
Ju³ sinu du = -u³ cosu + 3u² sinu - 6sinu + 6ucosu
(e) Evaluate the average energy using your approximate wave function from part (d), and
compare it to the result you got from part (b).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Introductory Chemistry: A Foundation](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Physical Chemistry](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_smallCoverImage.gif)
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
![Introductory Chemistry: A Foundation](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Physical Chemistry](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_smallCoverImage.gif)
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,