4. On the basis of your mechanism for Problem 3(c), answer the following questions: (a) Additions of Brg and ArSCI to [2.2.1]-bicycloheptene give the products shown in Equa- tions 11 and 12, respectively. Give a mechanism for the products of Reaction 11 and explain why only the bromination gives rearrangement products. Br 4.4.4.4 Br +Br₂- Br 4.-4 +ArSCI →→→→ SAr Br (11) (12)
Reactions of Ethers
Ethers (R-O-R’) are compounds formed by replacing hydrogen atoms of an alcohol (R-OH compound) or a phenol (C6H5OH) by an aryl/ acyl group (functional group after removing single hydrogen from an aromatic ring). In this section, reaction, preparation and behavior of ethers are discussed in the context of organic chemistry.
Epoxides
Epoxides are a special class of cyclic ethers which are an important functional group in organic chemistry and generate reactive centers due to their unusual high reactivity. Due to their high reactivity, epoxides are considered to be toxic and mutagenic.
Williamson Ether Synthesis
An organic reaction in which an organohalide and a deprotonated alcohol forms ether is known as Williamson ether synthesis. Alexander Williamson developed the Williamson ether synthesis in 1850. The formation of ether in this synthesis is an SN2 reaction.
Step by step
Solved in 8 steps with 5 images