Q: Inflammation/hematoma formation
A: When the person get's an injury. He may experience bleeding from the site, pain and even he may loss…
Q: CN12 Hypoglossal
A: The twelve pairs of nerves that arise from the brain and function to connect the brain with several…
Q: -A wild-type strain. -A strain that contains a 15 base-pair deletion in the lac operon operator…
A: The widely used and closely related Escherichia coli "wild types" W3110 and MG1655, as well as…
Q: Hello, I'm not following the last question here. Please help.
A: Vasopression is also called anti diuretic hormone.It is a hormone synthesized from the AVP gene as a…
Q: 1. What are the primary movements of the knee joint? 2. What muscle groups are the most important in…
A: 4) A tear occurs when the fibrous tissues associated with a ligament, tendon, or muscles are ripped…
Q: Pertaining to water on the head = This is Medical terminology
A: The brain has ventricles, which are chambers that hold fluid. They occasionally contain too much…
Q: Body symmetry: Drawing of organism: #5 Distinctive features: Domain: but ri to consider that all…
A: Sponges are multicellular organisms that are studied under spongiology. They are heterotrophic…
Q: Medications for diabetes
A: Diabetes Mellitus: Diabetes is a chronic medical condition characterized by high levels of glucose…
Q: news story related to health communication
A: There are a few important points about the health Health is defined as the absence of any…
Q: Aphakia and it's correction
A: Eye- The eye is one of the sense organs of the body which is used for seeing different objects. The…
Q: Please answer the following question:
A: Please see the answer section. Reference: Byju's (n.d.). Difference Between Cervical, Thoracic and…
Q: TERM MAIN ENTRY (Pronunciation) MEANING (Definition)
A: Term Main Entry Meaning Aphasia uh-fay-zee-uh Inability to understand or produce speech, as a…
Q: sterile offspring ______________________________.
A: The biological process in which the offspring (new individuals) are produced from their parents is…
Q: Identify #4 3 1 2
A: The diagram represents the larynx. The larynx is a muscular tube found just below the pharynx. The…
Q: What do the palmar arches supply blood to? One word.
A: The human circulatory system is responsible for the circulation of blood through the body. It is…
Q: Medical intervention of post abdomenal weakness
A: The key to recovering after a caesarean section or an open hernia repair is to move slowly. After…
Q: Chronic kidney disease treatments
A: Chronic kidney disease is a long term condition with progressive and irreversible condition of…
Q: living style of a healthy girl of age 19 (including eating habit and exercises
A: We can breakdown the concept of health into different categories. These could include physical ,…
Q: Mitochondrial toxicity drugs
A: Mitochondria is an essential cell organelle of organisms. It is a membrane bound organelle and is…
Q: 38
A: The given figure is the cross section of a male reproductive system .
Q: 8. EN A physician orders Solu-Cortef 150 mg IM q8h for a patient with severe DO allergic dermatitis.…
A: Hello. Since your question has multiple parts, we will solve first question for you. If you want…
Q: 14 13 of
A: It is a cochlear region. Parts are colored differently.
Just need answer to question 4
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
- What is the consequence of mutation of a mismatch repair enzyme? How will this affect the function of a gene?Familial retinoblastoma, a rare autosomal dominant defect, arose in a large family that had no prior history of the disease. Consider the following pedigree (the darkly colored symbols represent affected individuals): a. Circle the individual(s) in which the mutation most likely occurred. b. Is the person who is the source of the mutation affected by retinoblastoma? Justify your answer. c. Assuming that the mutant allele is fully penetrant, what is the chance that an affected individual will have an affected child?As a physician, you deliver a baby with protruding heels and clenched fists with the second and fifth fingers over-lapping the third and fourth fingers. a. What genetic disorder do you suspect the baby has? b. How do you confirm your suspicion?
- Phenylketonuria and alkaptonuria are both autosomal recessive diseases. If a person with PKU marries a person with AKU, what will the phenotype of their children be?Provide a brief summary of the Sanger sequencing method.Which of the following terms means many genes? polymorphism polygeny polypeptide multiple alleles
- Although it is well known that X-rays cause mutations, they are routinely used to diagnose medical problems, including potential tumors, broken bones, and dental cavities. Why is this done? What precautions need to be taken?Two genes associated with breast cancer, BRCA1 and BRCA2, were discovered in 1994 and 1995, respectively, and shortly thereafter, were patented by Myriad Genetics, a company based in Utah. Under the patents, testing for mutations in these genes could only be performed by Myriad, at costs from 300 to 3,000. Myriad also patented the process of analyzing the results of such tests, preventing anyone who obtains the sequence of their BRCA genes by other means (which itself would probably be patent infringement) from interpreting the information. The idea that genes can be patented has been a contentious issue from the beginning. Patents are not granted for products of nature, meaning that genes inside the body are not patentable, but biotech companies successfully argued that by removing a gene from the human body, purifying it, and then obtaining its DNA sequence, they created something not found in nature, and which is therefore a patentable invention. The U.S. Patent Office found the argument persuasive, but opponents argue that genes are parts of our bodies and can be identified but not invented. Biotech companies argue that without the protection offered by patents, they would have no incentive for research and development of diagnostic tests. In Europe, patents for BRCA1 and BRCA2 were revoked in 2004 because they did not meet the standards for a patent. After more than a decade of legal disputes, the patents were partially restored in 2008 on a very restricted basis. In the United States, a lawsuit, focused on the patents for the BRCA genes, was filed in May 2009. The suit challenges the basic idea that genes are patentable. In November 2009, the judge ruled that the lawsuit can proceed, and the case is moving forward. In March 2010, a federal court invalidated Myriad Genetics patent on these genes. In August 2011, the U.S. Court of Appeals reversed the lower courts decision and ruled that gene sequences isolated from cells are not a product of nature and are therefore patentable. The case went to the U.S. Supreme Court, which ordered the appeals court to reconsider the case. The Federal Appeals Court did not change its decision, and the case once again, went to the U.S. Supreme Court. A unanimous decision in June 2013 invalidated Myriads patents on the basis that isolating a gene from nature does not make it patentable. This is a landmark decision on gene patenting with widespread ramifications for the biotechnoloogy industry. Will this decision reduce the incentives for companies to invest in new diagnostic tests that would be used by cancer victims or those with serious genetic disorders?Which members of the pedigree could have been carriers, and which might have been the source of the mutation?
- James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do James and Sally have any guarantees that the tests and recommendations are scientifically valid?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think that companies should be allowed to market such tests directly to the public, or do you believe that only a physician should be able to order them?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. What kinds of regulations, if any, should be in place to ensure that the results of these tests are not abused?